思路:因为奶牛的爱慕关系具有传递性,所以每个环(强连通分量)里的奶牛是互相喜欢的。那么我们可以用到Tarjan算法把每个强连通分量找出,并缩点,把每个强连通分量都缩成一个点(当前缩点里的奶牛都是互相喜欢的)。这样一来,这个图就变成了一个DAG(有向无环图)。然后我们只需要统计每个缩点的出度就好了,如果一个点有出度&&我们知道这个图是一个DAG,所以这个强连通分量(这个缩点)里的奶牛就不可能被这个缩点所连出去的缩点里的奶牛所喜欢(这是无环图——DAG)。综上所述,我们只需要统计一下有多少个没有出度的强连通分量就好了,但有多个没有出度的强连通分量也不行,因为这样就会有两多群群奶牛不喜欢别的奶牛,使得奶牛们无法收到其他奶牛(这多群奶牛)的喜欢,这样就不行了 。

画一张图形象一下:

code :

 #include <bits/stdc++.h>
#define INF 0x3f3f3f3f
using namespace std;
const int MAX = 5e4 + ;
stack < int > pru;
int n, m, low[MAX], dfn[MAX], head[MAX], vis[MAX], col[MAX], sum[MAX], color, num, z, out[MAX], ans, cnt;
struct node
{
int next, to;
}stu[MAX];
inline void add(int x, int y)
{
stu[++num].next = head[x];;
stu[num].to = y;
head[x] = num;
return;
}
inline void tarjan(int u)//Tarjan算法模板,这里用于缩点
{
low[u] = dfn[u] = ++z;
vis[u] = ;
pru.push(u);
for(register int i = head[u]; i; i = stu[i].next)
{
int k = stu[i].to;
if(!vis[k])
{
tarjan(k);
low[u] = min(low[u], low[k]);
}
else if(!col[k])
{
low[u] = min(low[u], dfn[k]);
}
}
if(low[u] == dfn[u])
{
col[u] = ++color;
++sum[color];//当前强连通分量里的奶牛的个数++
while(pru.top() != u)
{
col[pru.top()] = color;
++sum[color];//当前强连通分量里的奶牛的个数++
pru.pop();
}
pru.pop();
}
return;
}
signed main()
{
scanf("%d %d", &n, &m);
for(register int i = , x, y; i <= m; ++i)
{
scanf("%d %d", &x, &y);
add(y, x);//建反向边,把统计出度变为统计入度,更加方便一些
}
for(register int i = ; i <= n; ++i)
{
if(!vis[i])
{
tarjan(i);
}
}
for(register int u = ; u <= n; ++u)//循环每个结点的出度(这里是入度,因为建的是反向边)
{
for(register int i = head[u]; i; i = stu[i].next)
{
int k = stu[i].to;//因为建的是反向边,所以i其实是k的出度
if(col[k] != col[u])//颜色不相同就代表不在一个强连通分量里
{
++out[col[k]];//所以k的颜色(及包含k的那个强连通分量)就不能选了(这里标记为出度++),至于为什么思路里有讲
}
}
}
for(register int i = ; i <= color; ++i)//枚举每种颜色(每个强连通分量)
{
if(!out[i])//要是没有出度(及当前强连通分量中没有奶牛喜欢别的奶牛)
{
++cnt;//记录有几个强连通分量的缩点没有出度
ans = sum[i];//注意,这里是sum[i],因为i点只是当前强连通分量的缩点,真正被所有奶牛都喜欢的奶牛个数其实是这个强连通分量的大小(及当前强连通分量中奶牛的个数)
}
}
if(cnt == )//必须只有一个强连通分量没有出度,如果有多个也不行,因为这样那两个强连通分量里的奶牛都是不互相喜欢的
{
printf("%d", ans);
}
else
{
printf("");//没有奶牛被所有奶牛喜欢
}
return ;
}

洛谷 P2341 【受欢迎的牛】的更多相关文章

  1. HAOI2006 (洛谷P2341)受欢迎的牛 题解

    HAOI2006 (洛谷P2341)受欢迎的牛 题解 题目描述 友情链接原题 每头奶牛都梦想成为牛棚里的明星.被所有奶牛喜欢的奶牛就是一头明星奶牛.所有奶 牛都是自恋狂,每头奶牛总是喜欢自己的.奶牛之 ...

  2. 洛谷P2341受欢迎的牛

    传送门啦 这是一个tarjan强连通分量与出度结合的例题. 先明确一下题意,如果这个点(缩点之后的)没有出度,这个点才能成为明星牛(明星牛的定义是:所有牛都喜欢他才可以). 由于我们进行了缩点,所以我 ...

  3. 洛谷 [P2341] 受欢迎的牛

    强连通分量 一个结论: 在有向图中, 一个联通块能被所有点遍历当且仅当图中只有一个连通块出度为零 #include <iostream> #include <cstdio> # ...

  4. 【题解】洛谷P2341 [HAOI2006]受欢迎的牛(强连通分量)

    洛谷P2341:https://www.luogu.org/problemnew/show/P2341 前言 这题看错题目 足足花了将近5小时提交了15次 在一位dalao的提醒下才AC了 记得要看清 ...

  5. 洛谷 P2341 [HAOI2006]受欢迎的牛 解题报告

    P2341 [HAOI2006]受欢迎的牛 题目描述 每头奶牛都梦想成为牛棚里的明星.被所有奶牛喜欢的奶牛就是一头明星奶牛.所有奶 牛都是自恋狂,每头奶牛总是喜欢自己的.奶牛之间的"喜欢&q ...

  6. 洛谷——P2341 [HAOI2006]受欢迎的牛//POJ2186:Popular Cows

    P2341 [HAOI2006]受欢迎的牛/POJ2186:Popular Cows 题目背景 本题测试数据已修复. 题目描述 每头奶牛都梦想成为牛棚里的明星.被所有奶牛喜欢的奶牛就是一头明星奶牛.所 ...

  7. 洛谷P2341 [HAOI2006]受欢迎的牛 (Tarjan,SCC缩点)

    P2341 [HAOI2006]受欢迎的牛|[模板]强连通分量 https://www.luogu.org/problem/P2341 题目描述 每头奶牛都梦想成为牛棚里的明星.被所有奶牛喜欢的奶牛就 ...

  8. 【模板】Tarjan缩点,强连通分量 洛谷P2341 [HAOI2006]受欢迎的牛 [2017年6月计划 强连通分量01]

    P2341 [HAOI2006]受欢迎的牛 题目描述 每头奶牛都梦想成为牛棚里的明星.被所有奶牛喜欢的奶牛就是一头明星奶牛.所有奶 牛都是自恋狂,每头奶牛总是喜欢自己的.奶牛之间的“喜欢”是可以传递的 ...

  9. 【洛谷P2341】受欢迎的牛

    受欢迎的牛 题目描述 一些可以当明星的牛,一定会构成一个强连通分量,我们可以先缩点,最后统计一下出度为零的强连通分量大小即可, 若出度为零的强连通分量个数大于1,则输出0 #include<io ...

随机推荐

  1. JavaScript Boolean(逻辑)对象

    Boolean(逻辑)对象用于将非逻辑值转换为逻辑值(true 或者 false). 实例 检查逻辑值 检查逻辑对象是 true 还是 false. 完整的 Boolean 对象参考手册 我们提供 J ...

  2. LinkedList实现类

    List还有一个LinkedList的实现,它是一个基于链表实现的List类,对于顺序访问集合中的元素进行了优化,特别是当插入.删除元素时速度非常快.因为LinkedList即实现了List接口,也实 ...

  3. context创建过程解析(二)之deployWARs

    HostConfig.deployApps() //在监听到start事件类型,也就是StandardHost调用startInternal protected void deployApps() { ...

  4. 对ThreadLocal的一些理解

    ThreadLocal也是在面试过程中经常被问到的,本文主要从以下三个方面来谈对ThreadLocal的一些理解: ThreadLocal用在什么地方 ThreadLocal一些细节 ThreadLo ...

  5. AI中台——智能聊天机器人平台的架构与应用(分享实录)

    内容来源:宜信技术学院第3期技术沙龙-线上直播|AI中台——智能聊天机器人平台 主讲人:宜信科技中心AI中台团队负责人王东 导读:随着“中台”战略的提出,目前宜信中台建设在思想理念及架构设计上都已经取 ...

  6. Android:JNI与NDK(三)NDK构建的脚本文件配置

    友情提示:欢迎关注本人公众号,那里有更好的阅读体验以及第一时间获取最新文章 本文目录 一.前言 本篇我们介绍Android.mk与CMakeLists.txt构建NDK的配置文件,我们知道目前NDK的 ...

  7. AndroidSDK的目录详解

    Tools 目录工具(必须的工具) Android SDK Tools(必须,只需下载一个版本,一般选最新版本):基础工具包,版本号带rc字样的是预览版. Android SDK Platform-t ...

  8. luogu2279_[HNOI2003]消防局的设立 贪心

    传送门 不需要树形dp 关于深度排序 当前节点到最近的消防局(f[u])>2时要建新的与u的上面(v)的上面(w) 同时w的上面和上面的上面也要更新f值 #include <bits/st ...

  9. Linux 根分区扩容

    扩容分区之前,首先要保证当前有闲置空间 1. 查看当前现有分区情况 df -lah 可以看出当前根分区只剩 6.4 G 可用 2. 查看当前磁盘情况 fdisk -l 可以看出有 30G的未分配空间 ...

  10. C#使用LitJson解析Json数据

    //接受MQ服务器返回的值 private void jieshou(string zhiling, string can1, string can2, string can3, string can ...