Pandas Series 与 DataFrame 数据创建
>>> import pandas as pd
>>> import numpy as np
>>> print(np.__version__), print(pd.__version__)
1.14.3
0.23.0
Series
从 numpy 数组创建,并指定索引值
>>> s1 = pd.Series(np.random.rand(4), index=['a', 'b', 'c', 'd'])
>>> s1
a 0.390501
b 0.460804
c 0.176490
d 0.465754
dtype: float64
如果没有指定索引,则默认会创建从 0 到 N-1 的数组作为索引值,这里的 N 是 Series 的长度(即它所包含的元素个数):
>>> s2 = pd.Series(np.random.rand(4))
>>> s2
0 0.210839
1 0.979725
2 0.862411
3 0.780342
dtype: float64
通过索引访问元素
>>> s1['c']
0.176490
>>> # 也可以给元素赋值(修改元素值)
>>> s1['c'] = 3.14
>>> # 同时访问多个元素
>>> s1[['c', 'a', 'b']]
c 3.140000
a 0.390501
b 0.460804
dtype: float64
从字典中创建
字典中的键将会作为索引值,字典中的值将会作为元素值:
>>> s3 = pd.Series({'001': 'Nam', '002': 'Mary', '003': 'Peter'})
>>> s3
001 Nam
002 Mary
003 Peter
dtype: object
从字典中创建 Series 时,也可以自定义索引值或者是添加过滤(即指定只从字典中的某几个键进行创建)。当自定义的索引值不存在于字典中的键时,默认会用NaN来作为这个索引的值:
>>> s4 = pd.Series({'001': 'Nam', '002': 'Mary', '003': 'Peter'}, index=['002', '001', '024', '065'])
>>> s4
002 Mary
001 Nam
024 NaN
065 NaN
dtype: object
可以看到,由于传进来的字典中只有001和002这两个键,于是创建的 Series 中只保留了这两项,而024和065对应的值则是NaN。
判断元素是否为空
>>> pd.isnull(s4)
002 False
001 False
024 True
065 True
dtype: bool
从标量值创建
>>> s5 = pd.Series(2.71, index=['x', 'y'])
>>> s5
x 2.71
y 2.71
dtype: float64
可以理解为:指定多少个索引,创建的 Series 中就会包含多少个相同值的元素
相加
这里主要演示的是,Pandas 会自动根据索引来对齐两个 Series 然后再进行数学运算
>>> s6 = pd.Series(np.array([2.71, 3.14]), index=['z', 'y'])
>>> s6
z 2.71
y 3.14
dtype: float64
>>> s5 + s6
x NaN
y 5.85
z NaN
dtype: float64
DataFrame
从字典中创建
>>> data = {'Year': [2000, 2005, 2010, 2014],
'Median_Age': [24.2, 26.4, 28.5, 30.3],
'Density': [244, 256, 268, 279]}
>>> df1 = pd.DataFrame(data)
>>> df1
Year Median_Age Density
0 2000 24.2 244
1 2005 26.4 256
2 2010 28.5 268
3 2014 30.3 279
默认顺序是传进去的字典的顺序,也可以根据列名(column)进行指定:
>>> df2 = pd.DataFrame(data, columns=['Year', 'Density', 'Median_Age'])
>>> df2
Year Density Median_Age
0 2000 244 24.2
1 2005 256 26.4
2 2010 268 28.5
3 2014 279 30.3
也可以像 Series 那样指定索引值:
>>> df3 = pd.DataFrame(data, columns=['Year', 'Density', 'Median_Age'], index=['a', 'b', 'c', 'd'])
>>> df3.index
Index(['a', 'b', 'c', 'd'], dtype='object')
直接从嵌套的列表中创建
>>> df4 = pd.DataFrame([
['Peter', 16, 'pupil', 'TN', 'M', None],
['Mary', 21, 'student', 'SG', 'F', None],
['Nam', 22, 'student', 'HN', 'M', None],
['Mai', 31, 'nurse', 'SG', 'F', None],
['John', 28, 'laywer', 'SG', 'M', None]],
columns=['name', 'age', 'careet', 'province', 'sex', 'award'])
>>> # 有两种方式可以取到某一列。前提是这个列名不包含空格等特殊字符
>>> # 如果包含空格,则只能使用第二种方式
>>> df4.name
0 Peter
1 Mary
2 Nam
3 Mai
4 John
Name: name, dtype: object
>>> df4['name']
0 Peter
1 Mary
2 Nam
3 Mai
4 John
Name: name, dtype: object
>>> # 修改某一列(整列)的内容
>>> df4['award'] = None
name age careet province sex award
0 Peter 16 pupil TN M None
1 Mary 21 student SG F None
2 Nam 22 student HN M None
3 Mai 31 nurse SG F None
4 John 28 laywer SG M None
从文件中生成
从 CSV 文件中生成
假设有名为 person.csv 的文件内容如下:
name,age,career,province,sex
Peter,16,pupil,TN,M
Mary,21,student,SG,F
Nam,22,student,HN,M
Mai,31,nurse,SG,F
John,28,lawer,SG,M
可使用read_csv来进行读取,直接生成 DataFrame
>>> df4 = pd.read_csv('person.csv')
>>> df4
name age career province sex
0 Peter 16 pupil TN M
1 Mary 21 student SG F
2 Nam 22 student HN M
3 Mai 31 nurse SG F
4 John 28 lawer SG M
0.23.0 版本的 pandas 中的read_csv函数有 49 个参数,分别有不同的用途,比如指定分隔符、指定哪一行做为列名、跳过开头几行、忽略末尾几行等等。可以通过查看文档了解。
Pandas Series 与 DataFrame 数据创建的更多相关文章
- Pandas Series和DataFrame的基本概念
1,创建Series 1.1,通过iterable创建Series Series接收参数是Iterable,不能是Iterator pd.Series(Iterable) 可以多加一个index参数, ...
- 吴裕雄--天生自然python学习笔记:pandas模块删除 DataFrame 数据
Pandas 通过 drop 函数删除 DataFrarne 数据,语法为: 例如,删除陈聪明(行标题)的成绩: import pandas as pd datas = [[65,92,78,83,7 ...
- python中pandas里面的dataframe数据的筛选小结
pandas大家用的都很多,像我这种用的不够熟练,也不够多的就只能做做笔记,尽量留下点东西吧. 筛选行: a. 按照列的条件筛选 df = pandas.DataFrame(...) # suppos ...
- Pandas 横向合并DataFrame数据
需要将两个DataFrame进行横向拼接: 对 A_DataFrame 拼接一列数据: 数据样例如下: 将右侧source_df中的 “$factor” 列拼接到左侧qlib_df中,但左侧数据是分钟 ...
- pandas Series和dataframe
DataFrame是一个表格型数据结构,与Series不同的是,DataFrame可以含有一组或者有序的列,每列可以使不同的值的类型,它可以被看做成Series的字典.
- pandas-21 Series和Dataframe的画图方法
pandas-21 Series和Dataframe的画图方法 ### 前言 在pandas中,无论是series还是dataframe都内置了.plot()方法,可以结合plt.show()进行很方 ...
- pandas-01 Series()的几种创建方法
pandas-01 Series()的几种创建方法 pandas.Series()的几种创建方法. import numpy as np import pandas as pd # 使用一个列表生成一 ...
- python pandas ---Series,DataFrame 创建方法,操作运算操作(赋值,sort,get,del,pop,insert,+,-,*,/)
pandas 是基于 Numpy 构建的含有更高级数据结构和工具的数据分析包 pandas 也是围绕着 Series 和 DataFrame 两个核心数据结构展开的, 导入如下: from panda ...
- 利用Python进行数据分析(7) pandas基础: Series和DataFrame的简单介绍
一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...
随机推荐
- WPF的逻辑树和视觉树
原文:WPF的逻辑树和视觉树 这部分的内容来自于即将出版的新书<WPF Unleashed>的第三章样章.关于什么是逻辑树,我们先看下面的一个伪XAML代码的例子: <Window ...
- Apache Cordova介绍
原文:Apache Cordova介绍 Apache Cordova是一套设备API,允许移动应用的开发者使用JavaScript来访问本地设备的功能,比如摄像头.加速计.它可以与UI框架(如jQue ...
- WPF:通过BitmapSource的CopyPixels和Create方法来切割图片
原文 WPF:通过BitmapSource的CopyPixels和Create方法来切割图片 BitmapSource是WPF图像的最基本类型,它同时提供两个像素相关的方法就是CopyPixels和C ...
- ArcGIS for Desktop入门教程_第一章_引言 - ArcGIS知乎-新一代ArcGIS问答社区
原文:ArcGIS for Desktop入门教程_第一章_引言 - ArcGIS知乎-新一代ArcGIS问答社区 1 引言 1.1 读者定位 我们假设用户在阅读本指南前应已具备以下知识: · 熟悉W ...
- How to manipulate pixels on a bitmap by scanline property(Ma Xiaoguang and Ma Xiaoming)
We have been developing image processing software for above 14 years with old versions of Delphi, su ...
- shell中特殊变量及if条件
特殊变量: linux中shell变量$#,$@,$,$,$2的含义解释: 变量说明: $$ Shell本身的PID(ProcessID) $! Shell最后运行的后台Process的PID $? ...
- MySQL创建数据库并插入数据
启动MySql 启动服务:sudo service mysql start 登陆:mysql -u root 新建数据库 CREATE DATABASE <数据库名>; 在大多数SQL系统 ...
- 更改当前电源策略(使用SetActivePwrScheme API函数),自定义电源按钮动作(设置GLOBAL_POWER_POLICY)
#include <windows.h> #include <Powrprof.h> #pragma comment(lib, "Powrprof.lib" ...
- 深入理解Java G1垃圾收集器
本文首先简单介绍了垃圾收集的常见方式,然后再分析了G1收集器的收集原理,相比其他垃圾收集器的优势,最后给出了一些调优实践. 一,什么是垃圾回收 首先,在了解G1之前,我们需要清楚的知道,垃圾回收是什么 ...
- 云计算核心技术Docker的探索
首先通过一个简单的场景来看一下为什么Docker这么火? 开发人员在开发的时候是有一套开发环境,包括运行的操作系统,依赖的服务比如WebLogic.Java,一些特定的配置,比如JVM大小.字符集,操 ...