有n个数和5种操作

add a b c:把区间[a,b]内的所有数都增加c

set a b c:把区间[a,b]内的所有数都设为c

sum a b:查询区间[a,b]的区间和

max a b:查询区间[a,b]的最大值

min a b:查询区间[a,b]的最小值

输入描述 Input Description

第一行两个整数n,m,第二行n个整数表示这n个数的初始值

接下来m行操作,同题目描述

输出描述 Output Description

对于所有的sum、max、min询问,一行输出一个答案

样例输入 Sample Input

10 6

3 9 2 8 1 7 5 0 4 6

add 4 9 4

set 2 6 2

add 3 8 2

sum 2 10

max 1 7

min 3 6

样例输出 Sample Output

49

11

4

数据范围及提示 Data Size & Hint

10%:1<n,m<=10

30%:1<n,m<=10000

100%:1<n,m<=100000

保证中间结果在long long(C/C++)、int64(pascal)范围内

题解:线段树基本操作,区间修改,区间加,区间求最大,最小值;

参考代码:

 #include<cstdio>
#include<algorithm>
#define N 100001
using namespace std;
int n,m,x,y;
long long z;
long long ans;
struct node
{
int l,r,siz;
long long set,add,minn,maxn,sum;
bool v;
}tr[N*];
void up(int k)
{
tr[k].sum=tr[k<<].sum+tr[k<<|].sum;
tr[k].maxn=max(tr[k<<].maxn,tr[k<<|].maxn);
tr[k].minn=min(tr[k<<].minn,tr[k<<|].minn);
}
void build(int k,int l,int r)
{
tr[k].l=l; tr[k].r=r; tr[k].siz=r-l+;
if(l==r)
{
scanf("%d",&x);
tr[k].sum=tr[k].maxn=tr[k].minn=x;
return ;
}
int mid=l+r>>;
build(k<<,l,mid);
build(k<<|,mid+,r);
up(k);
}
void down_set(int k)
{
int l=k<<,r=k<<|;
tr[l].add=tr[r].add=;
tr[l].set=tr[r].set=tr[k].set;
tr[l].v=tr[r].v=true;
tr[l].maxn=tr[r].maxn=tr[l].minn=tr[r].minn=tr[k].set;
tr[l].sum=tr[l].siz*tr[k].set;
tr[r].sum=tr[r].siz*tr[k].set;
tr[k].v=tr[k].set=;
}
void down_add(int k)
{
int l=k<<,r=k<<|;
tr[l].maxn+=tr[k].add;
tr[r].maxn+=tr[k].add;
tr[l].minn+=tr[k].add;
tr[r].minn+=tr[k].add;
tr[l].sum+=tr[l].siz*tr[k].add;
tr[r].sum+=tr[r].siz*tr[k].add;
tr[l].add+=tr[k].add;
tr[r].add+=tr[k].add;
tr[k].add=;
}
void addd(int k)
{
if(tr[k].l>=x&&tr[k].r<=y)
{
tr[k].add+=z;
tr[k].maxn+=z;
tr[k].minn+=z;
tr[k].sum+=z*tr[k].siz;
return;
}
if(tr[k].v) down_set(k);
if(tr[k].add) down_add(k);
int mid=tr[k].l+tr[k].r>>;
if(x<=mid) addd(k<<);
if(y>mid) addd(k<<|);
up(k);
}
void sett(int k)
{
if(tr[k].l>=x&&tr[k].r<=y)
{
tr[k].maxn=tr[k].minn=z;
tr[k].set=z; tr[k].v=true;
tr[k].sum=z*tr[k].siz;
tr[k].add=;
return;
}
if(tr[k].v) down_set(k);
if(tr[k].add) down_add(k);
int mid=tr[k].l+tr[k].r>>;
if(x<=mid) sett(k<<);
if(y>mid) sett(k<<|);
up(k);
}
void query(int k,int w)
{
if(tr[k].l>=x&&tr[k].r<=y)
{
if(w==) ans+=tr[k].sum;
else if(w==) ans=max(ans,tr[k].maxn);
else ans=min(ans,tr[k].minn);
return;
}
if(tr[k].v) down_set(k);
if(tr[k].add) down_add(k);
int mid=tr[k].l+tr[k].r>>;
if(x<=mid) query(k<<,w);
if(y>mid) query(k<<|,w);
}
int main()
{
scanf("%d%d",&n,&m);
build(,,n);
char ch[];
while(m--)
{
scanf("%s",ch);
if(ch[]=='a')
{
scanf("%d%d%lld",&x,&y,&z);
addd();
}
else if(ch[]=='e')
{
scanf("%d%d%lld",&x,&y,&z);
sett();
}
else if(ch[]=='u')
{
scanf("%d%d",&x,&y);
ans=;
query(,);
printf("%lld\n",ans);
}
else if(ch[]=='a')
{
scanf("%d%d",&x,&y);
ans=-;
query(,);
printf("%lld\n",ans);
}
else
{
scanf("%d%d",&x,&y);
ans=1e17;
query(,);
printf("%lld\n",ans);
}
}
}

Codeves 4279 线段树练习5的更多相关文章

  1. bzoj3932--可持久化线段树

    题目大意: 最近实验室正在为其管理的超级计算机编制一套任务管理系统,而你被安排完成其中的查询部分.超级计算机中的 任务用三元组(Si,Ei,Pi)描述,(Si,Ei,Pi)表示任务从第Si秒开始,在第 ...

  2. codevs 1082 线段树练习 3(区间维护)

    codevs 1082 线段树练习 3  时间限制: 3 s  空间限制: 128000 KB  题目等级 : 大师 Master 题目描述 Description 给你N个数,有两种操作: 1:给区 ...

  3. codevs 1576 最长上升子序列的线段树优化

    题目:codevs 1576 最长严格上升子序列 链接:http://codevs.cn/problem/1576/ 优化的地方是 1到i-1 中最大的 f[j]值,并且A[j]<A[i] .根 ...

  4. codevs 1080 线段树点修改

    先来介绍一下线段树. 线段树是一个把线段,或者说一个区间储存在二叉树中.如图所示的就是一棵线段树,它维护一个区间的和. 蓝色数字的是线段树的节点在数组中的位置,它表示的区间已经在图上标出,它的值就是这 ...

  5. codevs 1082 线段树区间求和

    codevs 1082 线段树练习3 链接:http://codevs.cn/problem/1082/ sumv是维护求和的线段树,addv是标记这歌节点所在区间还需要加上的值. 我的线段树写法在运 ...

  6. PYOJ 44. 【HNSDFZ2016 #6】可持久化线段树

    #44. [HNSDFZ2016 #6]可持久化线段树 统计 描述 提交 自定义测试 题目描述 现有一序列 AA.您需要写一棵可持久化线段树,以实现如下操作: A v p x:对于版本v的序列,给 A ...

  7. CF719E(线段树+矩阵快速幂)

    题意:给你一个数列a,a[i]表示斐波那契数列的下标为a[i],求区间对应斐波那契数列数字的和,还要求能够维护对区间内所有下标加d的操作 分析:线段树 线段树的每个节点表示(f[i],f[i-1])这 ...

  8. 【BZOJ-3779】重组病毒 LinkCutTree + 线段树 + DFS序

    3779: 重组病毒 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 224  Solved: 95[Submit][Status][Discuss] ...

  9. 【BZOJ-3673&3674】可持久化并查集 可持久化线段树 + 并查集

    3673: 可持久化并查集 by zky Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 1878  Solved: 846[Submit][Status ...

随机推荐

  1. docker搭建本地registry

    第一步:拉取registry镜像 [root@localhost iso]# docker image pull registry Using default tag: latest latest: ...

  2. 【Swift】UNNotificationServiceExtension

    一.简介 An object that modifies the content of a remote notification before it's delivered to the user. ...

  3. Groovy单元测试框架spock数据驱动Demo

    spock是一款全能型的单元测试框架. 上次文章分享了spock框架的基础功能的使用,在此基础上,我根据自己写的Groovy的封装方法.数据驱动以及一些Groovy的高级语法做了一些尝试.发现还是有一 ...

  4. 如何构建自己的 react hooks

    我们组的前端妹子在组内分享时谈到了 react 的钩子,趁此机会我也对我所理解的内容进行下总结,方便更多的同学了解.在 React 的 v16.8.0 版本里添加了 hooks 的这种新的 API,我 ...

  5. 3. 彤哥说netty系列之Java BIO NIO AIO进化史

    你好,我是彤哥,本篇是netty系列的第三篇. 欢迎来我的公从号彤哥读源码系统地学习源码&架构的知识. 简介 上一章我们介绍了IO的五种模型,实际上Java只支持其中的三种,即BIO/NIO/ ...

  6. lqb 入门训练 A+B问题

    入门训练 A+B问题 时间限制:1.0s   内存限制:256.0MB     问题描述 输入A.B,输出A+B. 说明:在“问题描述”这部分,会给出试题的意思,以及所要求的目标. 输入格式 输入的第 ...

  7. LVM扩容案例

    LVM基础命令: pvdisplay 查看检查pv pvremove /dev/sdb #清除一个pv fdisk -l 检查磁盘 df -h 检查全部磁盘大小 df -Th 检查磁盘大小和分区格式类 ...

  8. python requirements.txt的创建及使用

    要求文件(requirements.txt)是安装包的依赖项及版本的记录文件. pip: 创建 (venv) $ pip freeze >requirements.txt 使用 (venv) $ ...

  9. 20191031-3 beta week 1/2 Scrum立会报告+燃尽图 01

    此作业要求参见[https://edu.cnblogs.com/campus/nenu/2019fall/homework/9911] 一.小组情况 队名:扛把子 组长:孙晓宇 组员:宋晓丽 梁梦瑶 ...

  10. 基于Galera Cluster多主结构的Mysql高可用集群

    Galera Cluster特点 1.多主架构:真正的多点读写的集群,在任何时候读写数据,都是最新的 2.同步复制:集群不同节点之间数据同步,没有延迟,在数据库挂掉之后,数据不会丢失 3.并发复制:从 ...