有n个数和5种操作

add a b c:把区间[a,b]内的所有数都增加c

set a b c:把区间[a,b]内的所有数都设为c

sum a b:查询区间[a,b]的区间和

max a b:查询区间[a,b]的最大值

min a b:查询区间[a,b]的最小值

输入描述 Input Description

第一行两个整数n,m,第二行n个整数表示这n个数的初始值

接下来m行操作,同题目描述

输出描述 Output Description

对于所有的sum、max、min询问,一行输出一个答案

样例输入 Sample Input

10 6

3 9 2 8 1 7 5 0 4 6

add 4 9 4

set 2 6 2

add 3 8 2

sum 2 10

max 1 7

min 3 6

样例输出 Sample Output

49

11

4

数据范围及提示 Data Size & Hint

10%:1<n,m<=10

30%:1<n,m<=10000

100%:1<n,m<=100000

保证中间结果在long long(C/C++)、int64(pascal)范围内

题解:线段树基本操作,区间修改,区间加,区间求最大,最小值;

参考代码:

 #include<cstdio>
#include<algorithm>
#define N 100001
using namespace std;
int n,m,x,y;
long long z;
long long ans;
struct node
{
int l,r,siz;
long long set,add,minn,maxn,sum;
bool v;
}tr[N*];
void up(int k)
{
tr[k].sum=tr[k<<].sum+tr[k<<|].sum;
tr[k].maxn=max(tr[k<<].maxn,tr[k<<|].maxn);
tr[k].minn=min(tr[k<<].minn,tr[k<<|].minn);
}
void build(int k,int l,int r)
{
tr[k].l=l; tr[k].r=r; tr[k].siz=r-l+;
if(l==r)
{
scanf("%d",&x);
tr[k].sum=tr[k].maxn=tr[k].minn=x;
return ;
}
int mid=l+r>>;
build(k<<,l,mid);
build(k<<|,mid+,r);
up(k);
}
void down_set(int k)
{
int l=k<<,r=k<<|;
tr[l].add=tr[r].add=;
tr[l].set=tr[r].set=tr[k].set;
tr[l].v=tr[r].v=true;
tr[l].maxn=tr[r].maxn=tr[l].minn=tr[r].minn=tr[k].set;
tr[l].sum=tr[l].siz*tr[k].set;
tr[r].sum=tr[r].siz*tr[k].set;
tr[k].v=tr[k].set=;
}
void down_add(int k)
{
int l=k<<,r=k<<|;
tr[l].maxn+=tr[k].add;
tr[r].maxn+=tr[k].add;
tr[l].minn+=tr[k].add;
tr[r].minn+=tr[k].add;
tr[l].sum+=tr[l].siz*tr[k].add;
tr[r].sum+=tr[r].siz*tr[k].add;
tr[l].add+=tr[k].add;
tr[r].add+=tr[k].add;
tr[k].add=;
}
void addd(int k)
{
if(tr[k].l>=x&&tr[k].r<=y)
{
tr[k].add+=z;
tr[k].maxn+=z;
tr[k].minn+=z;
tr[k].sum+=z*tr[k].siz;
return;
}
if(tr[k].v) down_set(k);
if(tr[k].add) down_add(k);
int mid=tr[k].l+tr[k].r>>;
if(x<=mid) addd(k<<);
if(y>mid) addd(k<<|);
up(k);
}
void sett(int k)
{
if(tr[k].l>=x&&tr[k].r<=y)
{
tr[k].maxn=tr[k].minn=z;
tr[k].set=z; tr[k].v=true;
tr[k].sum=z*tr[k].siz;
tr[k].add=;
return;
}
if(tr[k].v) down_set(k);
if(tr[k].add) down_add(k);
int mid=tr[k].l+tr[k].r>>;
if(x<=mid) sett(k<<);
if(y>mid) sett(k<<|);
up(k);
}
void query(int k,int w)
{
if(tr[k].l>=x&&tr[k].r<=y)
{
if(w==) ans+=tr[k].sum;
else if(w==) ans=max(ans,tr[k].maxn);
else ans=min(ans,tr[k].minn);
return;
}
if(tr[k].v) down_set(k);
if(tr[k].add) down_add(k);
int mid=tr[k].l+tr[k].r>>;
if(x<=mid) query(k<<,w);
if(y>mid) query(k<<|,w);
}
int main()
{
scanf("%d%d",&n,&m);
build(,,n);
char ch[];
while(m--)
{
scanf("%s",ch);
if(ch[]=='a')
{
scanf("%d%d%lld",&x,&y,&z);
addd();
}
else if(ch[]=='e')
{
scanf("%d%d%lld",&x,&y,&z);
sett();
}
else if(ch[]=='u')
{
scanf("%d%d",&x,&y);
ans=;
query(,);
printf("%lld\n",ans);
}
else if(ch[]=='a')
{
scanf("%d%d",&x,&y);
ans=-;
query(,);
printf("%lld\n",ans);
}
else
{
scanf("%d%d",&x,&y);
ans=1e17;
query(,);
printf("%lld\n",ans);
}
}
}

Codeves 4279 线段树练习5的更多相关文章

  1. bzoj3932--可持久化线段树

    题目大意: 最近实验室正在为其管理的超级计算机编制一套任务管理系统,而你被安排完成其中的查询部分.超级计算机中的 任务用三元组(Si,Ei,Pi)描述,(Si,Ei,Pi)表示任务从第Si秒开始,在第 ...

  2. codevs 1082 线段树练习 3(区间维护)

    codevs 1082 线段树练习 3  时间限制: 3 s  空间限制: 128000 KB  题目等级 : 大师 Master 题目描述 Description 给你N个数,有两种操作: 1:给区 ...

  3. codevs 1576 最长上升子序列的线段树优化

    题目:codevs 1576 最长严格上升子序列 链接:http://codevs.cn/problem/1576/ 优化的地方是 1到i-1 中最大的 f[j]值,并且A[j]<A[i] .根 ...

  4. codevs 1080 线段树点修改

    先来介绍一下线段树. 线段树是一个把线段,或者说一个区间储存在二叉树中.如图所示的就是一棵线段树,它维护一个区间的和. 蓝色数字的是线段树的节点在数组中的位置,它表示的区间已经在图上标出,它的值就是这 ...

  5. codevs 1082 线段树区间求和

    codevs 1082 线段树练习3 链接:http://codevs.cn/problem/1082/ sumv是维护求和的线段树,addv是标记这歌节点所在区间还需要加上的值. 我的线段树写法在运 ...

  6. PYOJ 44. 【HNSDFZ2016 #6】可持久化线段树

    #44. [HNSDFZ2016 #6]可持久化线段树 统计 描述 提交 自定义测试 题目描述 现有一序列 AA.您需要写一棵可持久化线段树,以实现如下操作: A v p x:对于版本v的序列,给 A ...

  7. CF719E(线段树+矩阵快速幂)

    题意:给你一个数列a,a[i]表示斐波那契数列的下标为a[i],求区间对应斐波那契数列数字的和,还要求能够维护对区间内所有下标加d的操作 分析:线段树 线段树的每个节点表示(f[i],f[i-1])这 ...

  8. 【BZOJ-3779】重组病毒 LinkCutTree + 线段树 + DFS序

    3779: 重组病毒 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 224  Solved: 95[Submit][Status][Discuss] ...

  9. 【BZOJ-3673&3674】可持久化并查集 可持久化线段树 + 并查集

    3673: 可持久化并查集 by zky Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 1878  Solved: 846[Submit][Status ...

随机推荐

  1. 淘宝小练习#css

    * { margin: 0; padding: 0; } a { text-decoration: none; } .box { background: #f4f4f4; } /* 头部样式STAR ...

  2. 如何查看当前linux服务器是否支持虚拟化

    [root@localhost ~]# grep -E '(svm|vmx)' /proc/cpuinfo 或者: [root@localhost ~]# cat /proc/cpuinfo 找到fl ...

  3. Nebula 架构剖析系列(二)图数据库的查询引擎设计

    摘要 上文(存储篇)说到数据库重要的两部分为存储和计算,本篇内容为你解读图数据库 Nebula 在查询引擎 Query Engine 方面的设计实践. 在 Nebula 中,Query Engine ...

  4. 力扣(LeetCode)删除排序链表中的重复元素 个人题解

    给定一个排序链表,删除所有重复的元素,使得每个元素只出现一次. 这题思路比较简单,同样是快慢针的思路. 用一个整数类型val对应最新的只出现过一次的那个值, 如果节点的下一个节点的值和这个对应则不做别 ...

  5. Java :一文掌握 Lambda 表达式

    本文将介绍 Java 8 新增的 Lambda 表达式,包括 Lambda 表达式的常见用法以及方法引用的用法,并对 Lambda 表达式的原理进行分析,最后对 Lambda 表达式的优缺点进行一个总 ...

  6. opencv 6 图像轮廓与图像分割修复 1 查找并绘制轮廓 寻找物体的凸包

    查找并绘制轮廓 寻找轮廓(findContours)函数 绘制轮廓(drawContours()函数) 基础实例程序:轮廓查找 #include <opencv2/opencv.hpp> ...

  7. 携程Apollo简单入门教程这一篇就够了

    1. Apollo背景 对程序配置的期望值也越来越高:配置修改后实时生效,灰度发布,分环境.分集群管理配置,完善的权限.审核机制……   废话不多说,参考官方文档   如果不想看文档, 也没关系, 跟 ...

  8. Git及Github

    目录 Git及Github的使用 Git的基本介绍 Git命令行操作 1.设置签名 2.创建本地库 3.仓库初始化 4.状态查看 5.添加文件 6.提交文件 7.历史记录 8.前进后退 9.删除文件 ...

  9. 2019-9-24:渗透测试,JavaScript数据类型基础学习

    JavaScript 数据类型 值类型(基本类型):字符串(String).数字(Number).布尔(Boolean).对空(Null).未定义(Undefined).Symbol. 引用数据类型: ...

  10. java基础总结(1)--深入理解基本数据类型

    深入理解java数据类型 java是一种强类型语言,这就意味着必须为每一个声明变量声明一种类型.在java中,一共有8种数据类型,其中4种整型,2种浮点类型,1种字符类型和一种表示真值的boolean ...