【LOJ#3144】[APIO2019]奇怪装置(数论)
【LOJ#3144】[APIO2019]奇怪装置(数论)
题面
题解
突然发现\(LOJ\)上有\(APIO\)的题啦,赶快来做一做。
这题是窝考场上切了的题嗷。写完暴力之后再推了推就推出正解了。。。
考虑\(t1,t2\)两个时刻,如果两个时刻的\((x,y)\)相等的话,考虑是一种什么样的情况。
t_1+[\frac{t_1}{B}]\equiv t_2+[\frac{t_2}{B}](\mod A)\\
t_1\equiv t_2(\mod B)
\end{cases}\]
那么根据第二个条件,我们不妨令\(t_1+kB=t_2,k>0,k\in Z\)。
那么带到第一个式子中就是:
\]
化简之后得到
\]
而\(A,B\)都是常量,所以\(\frac{A}{gcd(A,B+1)}|k\)。令\(g=\frac{A}{gcd(A,B+1)}\),所以\(g|k\)。
所以\(k\)要是\(g\)的倍数的时候才会满足这个条件。而\(t_1\mod B\)的取值共有\(B\)种,所以不难得到循环节就是\(T=gB\)。
那么把所有\(l,r\)取模之后得到一条条的线段,线段在\([0,T)\)的覆盖区间总长度就是答案,可以很简单的差分计算出答案。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<set>
using namespace std;
#define ll long long
#define MAX 1000100
inline ll read()
{
ll x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
ll n,sum,l[MAX],r[MAX],A,B,d,T,ans;
multiset<pair<ll,int> >S;
#define mp make_pair
void Add(ll l,ll r){S.insert(mp(l,1));S.insert(mp(r+1,-1));}
int main()
{
n=read();A=read();B=read();d=__gcd(A,B+1);
for(int i=1;i<=n;++i)l[i]=read(),r[i]=read(),sum+=r[i]-l[i]+1;
if(1.0*A*B/d>1e18){printf("%lld\n",sum);return 0;}
T=A/d*B;
for(int i=1;i<=n;++i)
{
if(r[i]-l[i]+1>=T){printf("%lld\n",T);return 0;}
if(l[i]/T!=r[i]/T)Add(l[i]%T,T-1),Add(0,r[i]%T);
else Add(l[i]%T,r[i]%T);
}
S.insert(mp(T,0));
ll lst=-1,c=0;
for(auto a:S)
{
if(c>0)ans+=a.first-lst;
c+=a.second;
lst=a.first;
}
printf("%lld\n",ans);
return 0;
}
【LOJ#3144】[APIO2019]奇怪装置(数论)的更多相关文章
- 洛谷$P5444\ [APIO2019]$奇怪装置 数论
正解:数论 解题报告: 传送门$QwQ$ 我好像当初考的时候这题爆零了,,,部分分都没想到,,,我真的好菜$kk$ 考虑如果在$t_1,t_2$两个时刻有$x_1=x_2,y_1=y_2$是什么情况$ ...
- 【LG5444】[APIO2019]奇怪装置
[LG5444][APIO2019]奇怪装置 题面 洛谷 题目大意: 给定\(A,B\),对于\(\forall t\in \mathbb N\),有二元组\((x,y)=((t+\lfloor\fr ...
- 题解-APIO2019奇怪装置
problem loj-3144 题意概要:设函数 \(f(t)\) 的返回值为一个二元组,即 \(f(t)=((t+\lfloor \frac tB\rfloor)\bmod A, t\bmod B ...
- Luogu P5444 [APIO2019]奇怪装置
题目 这种题目看上去就是有循环节的对吧. 在考场上,一个可行的方式是打表. 现在我们手推一下这个循环节. 记函数\(f(t)=(((t+\lfloor\frac tB\rfloor)\%A),(t\% ...
- [APIO2019] 奇怪装置
$solution:$ 问题其实就是求两个式子的循环节. 钦定 $t\mod B=0$且 $(t\neq 0)$,其 $t$ 为循环节. 则将 $1$ 式拆开得 $\frac{t\times (B+1 ...
- P5444 [APIO2019]奇怪装置
传送门 考虑求出最小的循环节 $G$ 使得 $t,t+G$ 得到的数对是一样的 由 $y \equiv t \mod B$ ,得到 $G$ 一定是 $B$ 的倍数,设 $zB=G$,则 $t,t+zB ...
- [APIO 2010] [LOJ 3144] 奇怪装置 (数学)
[APIO 2010] [LOJ 3144] 奇怪装置 (数学) 题面 略 分析 考虑t1,t2时刻坐标相同的条件 \[\begin{cases} t_1+\lfloor \frac{t_1}{B} ...
- #3144. 「APIO 2019」奇怪装置
#3144. 「APIO 2019」奇怪装置 题目描述 考古学家发现古代文明留下了一种奇怪的装置.该装置包含两个屏幕,分别显示两个整数 \(x\) 和 \(y\). 经过研究,科学家对该装置得出了一个 ...
- Loj #3096. 「SNOI2019」数论
Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...
随机推荐
- java高并发系列 - 第2天:并发级别
由于临界区的存在,多线程之间的并发必须受到控制.根据控制并发的策略,我们可以把并发的级别分为阻塞.无饥饿.无障碍.无锁.无等待几种. 阻塞 一个线程是阻塞的,那么在其他线程释放资源之前,当前线程无法继 ...
- python基础(32):进程(二)
1. multiprocess模块 仔细说来,multiprocess不是一个模块而是python中一个操作.管理进程的包. 之所以叫multi是取自multiple的多功能的意思,在这个包中几乎包含 ...
- java基础(30):DBUtils、连接池
1. DBUtils 如果只使用JDBC进行开发,我们会发现冗余代码过多,为了简化JDBC开发,本案例我们讲采用apache commons组件一个成员:DBUtils. DBUtils就是JDBC的 ...
- Java生鲜电商平台-SpringCloud微服务开发中的数据架构设计实战精讲
Java生鲜电商平台-SpringCloud微服务开发中的数据架构设计实战精讲 Java生鲜电商平台: 微服务是当前非常流行的技术框架,通过服务的小型化.原子化以及分布式架构的弹性伸缩和高可用性, ...
- Java生鲜电商平台-Java后端生成Token架构与设计详解
Java生鲜电商平台-Java后端生成Token架构与设计详解 目的:Java开源生鲜电商平台-Java后端生成Token目的是为了用于校验客户端,防止重复提交. 技术选型:用开源的JWT架构. 1. ...
- python基础—条件语句
一.Python基础 1.第一句python print('hello,world') Q: 后缀名可以任意? A: 导入模块时,如果不是.py后缀,会出错. 2.两种执行的方式: -python解 ...
- 使用JS通过Web API执行批量操作,多个操作是一个事务!
关注本人微信和易信公众号: 微软动态CRM专家罗勇 ,回复235或者20161105可方便获取本文,同时可以在第一间得到我发布的最新的博文信息,follow me!我的网站是 www.luoyong. ...
- Android框架Volley之:利用Imageloader和NetWorkImageView加载图片
首先我们在项目中导入这个框架: implementation 'com.mcxiaoke.volley:library:1.0.19' 在AndroidManifest文件当中添加网络权限: < ...
- 从0系统学Android-2.1Activity的使用
更多精品文章分类 第二章:先从看的到的入手-Activity 上一章成功创建了自己的第一个项目.这一章从页面入手,来进行学习. 2.1 Activity 是什么 Activity 是一种可以包含用户界 ...
- Linux—服务器之间传输文件
https://www.jb51.net/article/82608.htm https://blog.csdn.net/taian1665/article/details/86492400 http ...