正睿暑期培训day1考试
A
理解一下题意,然后玩几组样例就能发现,实际上就是\(k\)个\(i\)等价于\(1\)个\(i-1\)。所以就类似于\(k\)进制进行进位,如果最后\(0\)位上不是\(0\),那么就存在划分方案。否则就不存在划分方案。
输出第一次划分方案就记录一下每个数字是不是后面的数字凑出来的。如果是的话就像后面数字连边。这样就形成了一棵\(k\)叉树。最后\(dfs\)一遍输出即可。
考场上\(vector\)下标从1开始记录了。就\(wa\)惨了。。。
/*
* @Author: wxyww
* @Date: 2019-08-04 11:41:21
* @Last Modified time: 2019-08-04 16:08:45
*/
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<bitset>
#include<cstring>
#include<algorithm>
#include<string>
#include<queue>
#include<vector>
using namespace std;
typedef long long ll;
const int N = 200000 + 100;
ll read() {
ll x=0,f=1;char c=getchar();
while(c<'0'||c>'9') {
if(c=='-') f=-1;
c=getchar();
}
while(c>='0'&&c<='9') {
x=x*10+c-'0';
c=getchar();
}
return x*f;
}
int vis[N],tot;
int n,K;
vector<int>e[N * 10],ans[N];
void print(int pos,int u) {
if(u <= n) {
ans[pos].push_back(u);vis[u] = 1;return;
}
int k = e[u].size();
for(int i = 0;i < k;++i) {
print(pos,e[u][i]);
}
}
int main() {
int T = read();
while(T--) {
n = read(),K = read();
tot = n;
for(int i = 1;i <= n;++i) e[read()].push_back(i);
for(int i = n;i > 1;--i) {
int k = e[i].size();
while(k >= K) {
++tot;
for(int j = 1;j <= K;++j,k--) {
e[tot].push_back(e[i][k - 1]);
}
e[i - 1].push_back(tot);
}
}
if(e[1].size() < K) {
puts("0");
for(int i = 0;i <= tot;++i) e[i].clear();
for(int i = 0;i <= K;++i) ans[i].clear();
memset(vis,0,sizeof(vis));
continue;
}
puts("1");
for(int i = 0;i < K;++i) {
int k = e[1][i];
print(i + 1,k);
}
for(int i = 1;i <= n;++i) if(!vis[i]) ans[1].push_back(i);
for(int i = 1;i <= K;++i) {
int k = ans[i].size();
printf("%d ",k);
for(int j = 0;j < k;++j) printf("%d ",ans[i][j]);
puts("");
}
for(int i = 0;i <= tot;++i) e[i].clear();
for(int i = 0;i <= K;++i) ans[i].clear();
memset(vis,0,sizeof(vis));
}
return 0;
}
B
考场上只会一个暴力并查集的做法。就是每次暴力将相同的位置并起来,最后查询。然鹅,,,,没注意到"后面一个区间不能相交"这个重要条件。。。然后就硬生生把复杂度对的42分程序通过数据分治改成了22分的好成绩233.。。
只要将并查集改成暴力这题就能A了。。。
对于已经给出的每一位,都根据给出的相等条件不断向前跳,将这个字符储存在第一个可知的位置。对于后面的询问,用同样的方法向前跳即可。
考虑一下向前跳的复杂度。

如图,我们已知两个黑色矩形区域是相等的。那么显然这两个区域都含有一个长度为t的循环节。我们如果暴力跳的话就要跳\(\frac{len}{t}\)次。所以我们直接计算出最前面那个循环节中与当前查询字符相等的位置,直接跳过去即可。
这样每个条件都只会最多跳一次。所以复杂度就是\(O(m)\)的。
/*
* @Author: wxyww
* @Date: 2019-08-04 19:52:20
* @Last Modified time: 2019-08-04 20:16:31
*/
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<bitset>
#include<cstring>
#include<algorithm>
#include<string>
#include<queue>
#include<vector>
#include<map>
using namespace std;
typedef long long ll;
const int N = 1000100;
ll read() {
ll x=0,f=1;char c=getchar();
while(c<'0'||c>'9') {
if(c=='-') f=-1;
c=getchar();
}
while(c>='0'&&c<='9') {
x=x*10+c-'0';
c=getchar();
}
return x*f;
}
int n,m1,m2,Q;
struct node {
int l1,r1,l2,r2;
}a[N];
pair<int,char> b[N];
bool cmp(const node &A,const node &B) {
return A.l2 < B.l2;
}
map<int,char>ans;
int erfen(int x) {
int ret = 0,l = 1,r = m2;
while(l <= r) {
int mid = (l + r) >> 1;
if(x <= a[mid].r2) ret = mid,r = mid - 1;
else l = mid + 1;
}
return ret;
}
int find(int x) {
while(1) {
int p = erfen(x);
if(a[p].l2 > x || a[p].r2 < x) return x;
int tmp = a[p].l2 - a[p].l1;
x = x - (x - a[p].l2) / tmp * tmp;
while(x >= a[p].l2) x -= tmp;
}
}
int main() {
n = read(),m1 = read(),m2 = read(),Q = read();
for(int i = 1;i <= m1;++i) {
int x = read();char c;
scanf("%c",&c);
b[i] = make_pair(x,c);
}
for(int i = 1;i <= m2;++i) {
a[i].l1 = read();a[i].r1 = read();a[i].l2 = read();a[i].r2 = read();
}
sort(a + 1,a + m2 + 1,cmp);
for(int i = 1;i <= m1;++i) ans[find(b[i].first)] = b[i].second;
while(Q--) {
int x = find(read());
if(!ans.count(x)) puts("?");
else putchar(ans[x]),puts("");;
}
return 0;
}
C
先考虑一下无解的情况。
1.m为奇数肯定无解。这个很显然,每条路径长度都要是偶数,每条边都要走恰好一遍。显然边数为偶数
2.如果存在某个点的度数为偶数,肯定无解。考虑一个点肯定要作为恰好一条路径的端点,在这条路径中这个点被走了奇数次。而其他的每条路径这个点肯定都被走了偶数次。所以这个点的度数肯定为奇数。
然后先不考虑路径长度为偶数的问题。那么只要建一个虚点,向所有点连一条虚边,这个每个点的度数都是偶数。跑一边欧拉回路,删掉虚点和虚边。就得到了一个答案。
然后考虑如何处理长度为偶数的限制。如果我们把边两两配对建一个新图(因为边数为偶数,所以一定可以做到),再按照上面的方法跑。最后把边拆回成原来的边即可。
然后考虑如何将边配对。先建立一棵\(dfs\)树,先让子树处理完子树内部的边。子树可能无法恰好配对,当前可以处理的边就有子树内没能处理掉的边、与当前点相连的非树边、与父亲相连的边。尽量进行配对,如果无法完全配对就将剩下的那条边(必须是与父亲相连的那条)传回给父亲处理。
//@Author: wxyww
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
#include<ctime>
#include<cmath>
#include<map>
#include<string>
using namespace std;
typedef long long ll;
const int N = 2000000 + 10;
ll read() {
ll x = 0,f = 1; char c = getchar();
while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();}
while(c >= '0' && c <= '9') {x = x * 10 + c - '0',c = getchar();}
return x * f;
}
int du[N];
struct node {
int u,v,nxt,id,id2;
}e[N];
struct NODE {
int u,v,id1,id2;
};
queue<NODE>q;
int head[N],ejs = 1;
void add(int u,int v,int id,int id2) {
e[++ejs].v = v;e[ejs].u = u;e[ejs].nxt = head[u];head[u] = ejs;e[ejs].id = id;e[ejs].id2 = id2;
}
int viss[N],n,m,vis[N],dep[N];
int dfs(int u,int fa) {
int now = 0;
vis[u] = 1;
for(int i = head[u];i;i = e[i].nxt) {
if((i ^ 1) == fa) continue;
int v = e[i].v;
if(!vis[v]) {
dep[v] = dep[u] + 1;
int k = dfs(v,i);
if(!k) { viss[e[i].id] = 1;continue;}
if(now) {
q.push((NODE){e[k].v,e[now].v,e[k].id,e[now].id});
now = 0;
}
else now = k;
}
else {
if(dep[v] < dep[u]) continue;
if(viss[e[i].id]) continue;
if(now) {
q.push((NODE){e[i].v,e[now].v,e[i].id,e[now].id});
now = 0;
}
else now = i;
}
viss[e[i].id] = 1;
}
if(now) {
q.push((NODE){e[fa ^ 1].v,e[now].v,e[fa].id,e[now].id});
return 0;
}
return fa;
}
int vise[N],top,ans[N];
void Eur(int u) {
for(int &i = head[u];i;i = e[i].nxt) {
if(vise[i >> 1]) continue;
vise[i >> 1] = 1;
int v = e[i].v;
int tmp = i;
Eur(v);
ans[++top] = e[tmp].id2;ans[++top] = e[tmp].id;
}
}
int main() {
n = read(),m = read();
if(m & 1) return puts("0"),0;
for(int i = 1;i <= m;++i) {
int u = read(),v = read();
du[u]++;du[v]++;
add(u,v,i,0);add(v,u,i,0);
}
for(int i = 1;i <= n;++i) if(!(du[i] & 1)) return puts("0"),0;
puts("1");
dep[1] = 1;
dfs(1,0);
ejs = 1;memset(head,0,sizeof(head));
while(!q.empty()) {
NODE k = q.front();q.pop();
add(k.u,k.v,k.id1,k.id2);
add(k.v,k.u,k.id2,k.id1);
}
for(int i = 1;i <= n;++i) add(n + 1,i,-1,-1),add(i,n + 1,-1,-1);
Eur(n + 1);
for(int l = 1,r;l <= top;l = r + 1) {
while(ans[l] == -1 && l <= top) ++l;
if(l > top) break;
r = l + 1;
while(ans[r] != -1 && r <= top) ++r;
printf("%d ",r - l);
for(int i = l;i <= r - 1;++i) printf("%d ",ans[i]);
puts("");
}
return 0;
}
总结
一定要造大数据测试程序。
注意细节。
认真读题,get到全部条件。
期望得分:100+42+0=142
实际得分:7+22+0=29
呜呜呜~
正睿暑期培训day1考试的更多相关文章
- 正睿暑期培训day4考试
链接 A 求出来到每座山的距离后,就可以计算出每只猫等待的时间与出发时间的关系. 如果出发时间为\(x\),求出来只猫的等待时间.这里用\(b_i\)表示第i只猫的等待时间.然后我们将这些时间排序.问 ...
- 正睿暑期培训day3考试
链接 A 可以发现一个小棍的贡献是使得左右两列上的球位置互换.所以只要找出哪两个球会经过当前位置,然后swap一下就行了.. 考场上调了2.5h,依然没过样例.赛后发现忘了排序!!!!... /* * ...
- 8.4 正睿暑期集训营 Day1
目录 2018.8.4 正睿暑期集训营 Day1 A 数对子 B 逆序对 C 盖房子 考试代码 A B C 2018.8.4 正睿暑期集训营 Day1 时间:4.5h(实际) 期望得分:30+50+3 ...
- 8.10 正睿暑期集训营 Day7
目录 2018.8.10 正睿暑期集训营 Day7 总结 A 花园(思路) B 归来(Tarjan 拓扑) C 机场(凸函数 点分治) 考试代码 A B C 2018.8.10 正睿暑期集训营 Day ...
- 8.6 正睿暑期集训营 Day3
目录 2018.8.6 正睿暑期集训营 Day3 A 亵渎(DP) B 绕口令(KMP) C 最远点(LCT) 考试代码 A B C 2018.8.6 正睿暑期集训营 Day3 时间:5h(实际) 期 ...
- 8.9 正睿暑期集训营 Day6
目录 2018.8.9 正睿暑期集训营 Day6 A 萌新拆塔(状压DP) B 奇迹暖暖 C 风花雪月(DP) 考试代码 A B C 2018.8.9 正睿暑期集训营 Day6 时间:2.5h(实际) ...
- 8.8 正睿暑期集训营 Day5
目录 2018.8.8 正睿暑期集训营 Day5 总结 A 友谊巨轮(线段树 动态开点) B 璀璨光滑 C 构解巨树 考试代码 A B C 2018.8.8 正睿暑期集训营 Day5 时间:3.5h( ...
- 8.7 正睿暑期集训营 Day4
目录 2018.8.7 正睿暑期集训营 Day4 A 世界杯(贪心) B 数组(线段树) C 淘汰赛 考试代码 A B C 2018.8.7 正睿暑期集训营 Day4 时间:5h(实际) 期望得分:. ...
- 8.5 正睿暑期集训营 Day2
目录 2018.8.5 正睿暑期集训营 Day2 总结 A.占领地区(前缀和) B.配对(组合) C 导数卷积(NTT) 考试代码 T1 T2 T3 2018.8.5 正睿暑期集训营 Day2 时间: ...
随机推荐
- <Graph> Topological + Undirected Graph 310 Union Find 261 + 323 + (hard)305
310. Minimum Height Trees queue: degree为1的顶点 degree[ i ] : 和 i 顶点关联的边数. 先添加整个图,然后BFS删除每一层degree为1的节 ...
- 【2016NOI十连赛2-2】黑暗
[2016NOI十连赛2-2]黑暗 题目大意:定义一个无向图的权值为连通块个数的\(m\)次方.求\(n\)个点的所有无向图的权值和.多次询问. 数据范围:\(T\leq 1000,n\leq 300 ...
- SLB外部端口非80时---》转发到nginx---》URL跳转丢失端口的解决方案
配置nginx反向代理时遇到一个问题,当设置nginx监听80端口时转发请求没有问题.但一旦设置为监听其他端口,就一直跳转不正常: 如,访问欢迎页面时应该是重定向到登录页面,在这个重定向的过程中端口丢 ...
- git 清除远程仓库已经删除的本地分支 清除已经合并到master的本地分支
在gitlab中执行deleted merged.也是可以在本地看到这些分支的 查看本地分支和追踪情况: git remote show origin 可以发现远程分支已被删除的分支,根据提示可以使用 ...
- HTTP Error 500.0 - ANCM In-Process Handler Load Failure 排错历程
先上报错图 环境 Window Server 2008 r2 netcore 2.2 排错历程 看到这个错 我第一个想到netcore 安装问题 先检查了下环境 发现没问题 我排查了下应用池 确定是无 ...
- windows环境下安装配置MongoDB
版本选择MongoDB的版本命名规范如:x.y.z: y为奇数时表示当前版本为开发版,如:2.3.0.2.1.1: y为偶数时表示当前版本为稳定版,如:2.0.1.2.2.0: 目前官网上最新的版本为 ...
- Apache2 在Linux环境下的安装
安装Apache2: apt-get install apache2 启动Apache2服务: service apache2 start 在终端运行启动后,打开浏览器URL访问 http://loc ...
- PeriscopeHeartAnimation
// // ViewController.m // PeriscopeHeartAnimation // // Created by ldj on 4/28/15. // Copyright (c) ...
- 使用maven-compiler-plugin以及maven-shade-plugin完成maven项目打包
最近负责一个纯maven项目(项目需求尽量轻量化),需要自己完成打包工作. 因此,基于maven-compiler-plugin以及maven-shade-plugin完成项目的打包工作. 其中: m ...
- laravel 数据库操作之 DB facade & 查询构造器 & Eloquent ORM
<?php namespace App\Http\Controllers; use App\Student; use Illuminate\Support\Facades\DB; class S ...