Embarrassment
I don't know what I did wrong, why do I take care of me?
I did something wrong before, your parents will help you clean up.
But now you are doing something wrong, you have to bear it yourself.
If you do something very bad now, or are facing very bad things!!!!!
Please cheer up!!!You can't be knocked down by anything!!!!!!!!!!!
In the mortal world, everyone lives in purgatory
Sometimes there is really no hope, but look at the red words。。。。。。。。
Embarrassment的更多相关文章
- 拓扑排序 POJ2367Genealogical tree[topo-sort]
---恢复内容开始--- Genealogical tree Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4875 A ...
- Understanding, Operating and Monitoring Apache Kafka
Apache Kafka is an attractive service because it's conceptually simple and powerful. It's easy to un ...
- 【乔布斯05年斯坦福大学毕业典礼上的演讲】——Stay Hungry, Stay Foolish.(转)
Steve Jobs: Commencement Address at Stanford University "Stay Hungry, Stay Foolish." 求知若饥, ...
- Java性能提示(全)
http://www.onjava.com/pub/a/onjava/2001/05/30/optimization.htmlComparing the performance of LinkedLi ...
- You've got to find what you love
你必须找到你爱的东西 You've got to find what you love 史蒂夫乔布斯2005年6月在斯坦福大学毕业典礼上的演讲 I am honored to be with you ...
- timus 1022 Genealogical Tree(拓扑排序)
Genealogical Tree Time limit: 1.0 secondMemory limit: 64 MB Background The system of Martians’ blood ...
- 越狱Season 1-Episode 21: Go
Season 1, Episode 21: Go -Michael: I need you to let me get us out of here. 我需要你帮我出去 -Patoshik: If y ...
- poj 2367 Genealogical tree
题目连接 http://poj.org/problem?id=2367 Genealogical tree Description The system of Martians' blood rela ...
- Competing in a data science contest without reading the data
Competing in a data science contest without reading the data Machine learning competitions have beco ...
随机推荐
- webapi 参数传递详解
原因 经常有朋友遇到webapi参数传递问题,自己也碰到过一些坑,在此记录下正确的姿势,简单参数传递相信没有人会有问题,容易出现问题的是对象参数和表单参数. 1.WebApi5.2.3有FromBod ...
- odoo12之应用:一、双因子验证(Two-factor authentication, 2FA)(HOTP,TOTP)附源码
前言 双因子认证:双因子认证(2FA)是指结合密码以及实物(信用卡.SMS手机.令牌或指纹等生物标志)两种条件对用户进行认证的方法.--百度百科 跟我一样"老"的网瘾少年想必一定见 ...
- 【LeetCode】334#递增的三元子序列
题目描述 给定一个未排序的数组,判断这个数组中是否存在长度为 3 的递增子序列. 数学表达式如下: 如果存在这样的 i, j, k, 且满足 0 ≤ i < j < k ≤ n-1, 使得 ...
- springboot整合mybatis(注解)
springboot整合mybatis(注解) 1.pom.xml: <?xml version="1.0" encoding="UTF-8"?> ...
- hive 元数据解析
在使用Hive进行开发时,我们往往需要获得一个已存在hive表的建表语句(DDL),然而hive本身并没有提供这样一个工具. 要想还原建表DDL就必须从元数据入手,我们知道,hive的元数据并不存放在 ...
- ios 把数组对象转成json字符串存起来
1第一步是我们获取数据源 一般我们都是从接口请求数据 NSArray *subColumnsArray = nil; NSDictionary *dict = [NSJSONSerialization ...
- charles 界面
本文参考:charles 界面 没有用过,先留个记号,以后再来看 profiles contain a complete copy of all your configuration settings ...
- c语言的数据类型,运算符,存储类型
[1词法符号]1. 关键字:32个1) 存储类型:决定(设备)变量的存储位置auto(自动型).extern(外部引用) static(静态型) register(寄存器类型)2) 数据类型:决定设备 ...
- Scala 系列(十三)—— 隐式转换和隐式参数
一.隐式转换 1.1 使用隐式转换 隐式转换指的是以implicit关键字声明带有单个参数的转换函数,它将值从一种类型转换为另一种类型,以便使用之前类型所没有的功能.示例如下: // 普通人 clas ...
- .Net轻量状态机Stateless
很多业务系统开发中,不可避免的会出现状态变化,通常采用的情形可能是使用工作流去完成,但是对于简单场景下,用工作流有点大财小用感觉,比如订单业务中,订单状态的变更,涉及到的状态量不是很多,即使通过简单的 ...