Index对象负责管理轴标签、轴名称等元数据,是一个不可修改的、有序的、可以索引的ndarry对象。在构建Sereis或DataFrame时,所用到的任何数据或者array-like的标签,都会转换为一个Index对象。Index对象是一个从索引到数据值的映射,当数据是一列时,Index是列索引;当数据是一行数据时,Index是行索引。

一,基础函数

用于创建索引的最基础的构造函数:

pandas.Index(data,dtype=object,name)

参数注释:

  • data:类似于一维数组的对象
  • dtype:用于设置索引元素的类型,默认值是object
  • name:索引的名称,默认值是Index

举个例子,创建一个整数索引:

>>> pd.Index([1, 2, 3])
Int64Index([1, 2, 3], dtype='int64')

索引是一个ndarray对象,元素的类型相同,每一个Index对象,常用的属性有:

  • values:索引的值
  • array:以数组形式返回索引元素的值
  • dtype:索引元素的数据类型
  • name:索引的名称属性
  • shape:索引的形状

二,索引的转换

索引是一个ndarray对象,不仅元素类型可以转换,其对象本身也可以强转为其他like-array类型,比如list、Series和DataFrame。

1,强转索引值的类型

显式把索引元素的类型强制转换成其他数据类型:

Index.astype(self, dtype, copy=True)

2,把索引转换成list

list是由索引的值构成的:

Index.to_list(self)

3,把索引转换成Series

Series的索引值和数据值相同,是由原索引的数据值构成的:

Index.to_series(self, index=None, name=None)

参数index 表示新建Sereis的索引,默认值是None,表示新建Sereis的索引就是原索引。

>>> idx = pd.Index(['Ant', 'Bear', 'Cow'], name='animal')
>>> idx.to_series()
animal
Ant Ant
Bear Bear
Cow Cow
Name: animal, dtype: object

4,把索引转换成DataFrame

创建一个新的DataFrame对象,列的值是由索引值构成的,默认情况下,新DataFrame的索引就是原索引:

Index.to_frame(self, index=True, name=None)

参数index表示是否把原索引作为新创建的DataFrame对象的索引,默认值是True。

>>> idx = pd.Index(['Ant', 'Bear', 'Cow'], name='animal')
>>> idx.to_frame()
animal
animal
Ant Ant
Bear Bear
Cow Cow

5,把索引展开为ndarray对象

该方法和numpy.ravel() 相同,把Index对象展开为一维的ndarray对象:

Index.ravel(self, order='C')

三,索引的排序

按照索引的值进行排序,但是返回索引值的下标,参数 *args和 **kwargs都是传递给numpy.ndarray.argsort函数的参数。

Index.argsort(self, *args, **kwargs)

按照索引的值进行排序,返回排序的副本,参数return_indexer 表示是否返回索引值的下标:

Index.sort_values(self, return_indexer=False, ascending=True)

举个例子,有如下索引:

>>> idx = pd.Index(['b', 'a', 'd', 'c'])
Index(['b', 'a', 'd', 'c'], dtype='object')

按照索引值进行排序,返回排序索引的下标:

>>> order = idx.argsort()
>>> order
array([1, 0, 3, 2])

通过下标来查看索引的排序值:

>>> idx[order]
Index(['a', 'b', 'c', 'd'], dtype='object')

当然,也可以直接返回已排序的索引:

>>> idx.sort_values()
Index(['a', 'b', 'c', 'd'], dtype='object')

如果要返回已排序的索引和对应的下标,需要设置参数return_indexer=True:

>>> idx.sort_values(return_indexer=True)
(Index(['a', 'b', 'c', 'd'], dtype='object'), array([1, 0, 3, 2], dtype=int64))

参考文档:

pandas index

pandas 学习 第8篇:Index 对象 - (创建、转换、排序)的更多相关文章

  1. pandas 学习 第十一篇:处理缺失值

    Pandas中的缺失值是指nan.None和NaT.如果需要把inf 和 -inf视为缺失值,需要设置 pandas的选项: pandas.options.mode.use_inf_as_na = T ...

  2. pandas 学习 第14篇:索引和选择数据

    数据框和序列结构中都有轴标签,轴标签的信息存储在Index对象中,轴标签的最重要的作用是: 唯一标识数据,用于定位数据 用于数据对齐 获取和设置数据集的子集. 本文重点关注如何对序列(Series)和 ...

  3. pandas 学习 第2篇:Series -(创建,属性,转换和索引)

    序列(Series)是由一组数据(各种NumPy数据类型),以及一组与之相关的数据标签(索引)组成,序列不要求数据类型是相同的. 序列是一个一维数组,只有一个维度(或称作轴)是行(row),在访问序列 ...

  4. pandas 学习 第3篇:Series - 数据处理(应用、分组、滚动、扩展、指数加权移动平均)

    序列内置一些函数,用于循环对序列的元素执行操作. 一,应用和转换函数 应用apply 对序列的各个元素应用函数: Series.apply(self, func, convert_dtype=True ...

  5. pandas 学习 第1篇:pandas基础 - 数据结构和数据类型

    pandas是基于NumPy构建的模块,含有使数据分析更快更简单的操作工具和数据结构,是数据分析必不可少的五个包之一.pandas包含序列Series和数据框DataFrame两种最主要数据结构,索引 ...

  6. Pandas 学习 第9篇:DataFrame - 数据的输入输出

    常用的数据存储介质是数据库和csv文件,pandas模块包含了相应的API对数据进行输入和输出: 对于格式化的平面文件:read_table() 对于csv文件:read_csv().to_csv() ...

  7. JS学习笔记-OO疑问之对象创建

    问一.引入工厂,解决反复代码 前面已经提到,JS中创建对象的方法,不难发现,主要的创建方法中,创建一个对象还算简单,假设创建多个类似的对象的话就会产生大量反复的代码. 解决:工厂模式方法(加入一个专门 ...

  8. pandas 学习 第5篇:DataFrame - 访问数据框

    数据框是用于存储数据的二维结构,分为行和列,一行和一列的交叉位置是一个cell,该cell的位置是由行索引和列索引共同确定的.可以通过at/iat,或loc/iloc属性来访问数据框的元素,该属性后跟 ...

  9. pandas 学习 第7篇:DataFrame - 数据处理(应用、操作索引、重命名、合并)

    DataFrame的这些操作和Series很相似,这里简单介绍一下. 一,应用和应用映射 apply()函数对每个轴应用一个函数,applymap()函数对每个元素应用一个函数: DataFrame. ...

随机推荐

  1. 小程序之--动态设置页面标题 wx.setNavigationBarTitle

    参考地址 http://www.yilingsj.com/xwzj/2018-11-26/weixin-navigationbartitletext.html 页面最初是[在线教研] 可以在这个页面的 ...

  2. 2019年跨越速递Java工程师笔试题

    1.下面哪个选项可以用于JSP页面之间传递对象(A C) A application B page C session D error  E response 评语:这道题考察的是对JSP内置对象的了 ...

  3. Python3 获取系统资源

    cpu disk mem import osimport psutilos.chdir(os.getcwd()) #cpu def get_cpu_info(): cpu_percent=psutil ...

  4. PHP 将远程文件写入到pdf或者word

    /** * 下载 */public function download($ids = null){ //一些条件参数啥的 $data = []; //获取文件 $res = curl_post(url ...

  5. Linux中,Tomcat 怎么承载高并发(深入Tcp参数 backlog)

    一.前言 这两天看tomcat,查阅 tomcat 怎么承载高并发时,看到了backlog参数.我们知道,服务器端一般使用mq来减轻高并发下的洪峰冲击,将暂时不能处理的请求放入队列,后续再慢慢处理.其 ...

  6. 工作笔记 之 Python应用技术

    python socket编程详细介绍 网络上的两个程序通过一个双向的通信连接实现数据的交换,这个连接的一端称为一个socket,建立网络通信连接至少要一对端口号(socket). Socket本质是 ...

  7. JAVA集合框架(二)-List和Set

    List的常用实现类 list集合是有序的,顺序即添加的顺序,元素是可重复的. ArrayList LinkedList Vector ArrayList 底层基于数组实现.在add元素的过程中,如果 ...

  8. C#构造函数、属性的应用

    using System; using System.Collections.Generic; using System.Text; namespace test { class Program { ...

  9. c#时间戳相互转换

    /// <summary> /// 获取时间戳 /// </summary> /// <returns></returns> public static ...

  10. SSH框架之Struts2第三篇

    1.3相关知识点 : 1.3.1 OGNL的表达式 : 1.3.1.1 什么是OGNL OGNL是Object-Graph Navigation Language的编写,它是一种功能强大的表达式语言, ...