本代码参考自:https://github.com/lawlite19/MachineLearning_Python#%E4%B8%80%E7%BA%BF%E6%80%A7%E5%9B%9E%E5%BD%92

首先,线性回归公式:y = X*W +b 其中X是m行n列的数据集,m代表样本的个数,n代表每个样本的数据维度。则W是n行1列的数据,b是m行1列的数据,y也是。

损失函数采用MSE,采用梯度下降法进行训练

1 .加载数据集并进行读取

def load_csvdata(filename,split,dataType):        #加载数据集
return np.loadtxt(filename,delimiter = split,dtype = dataType) def read_data(): #读取数据集
data = load_csvdata("data.txt",split=",",dataType=np.float64)
print(data.shape)
X = data[:,0:-1] #取data的前两列
y = data[:,-1] #取data的最后一列作为标签
return X,y

2 . 对数据进行标准化

def feature_normalization(X):
X_norm = np.array(X)
mu = np.zeros((1,X.shape[1]))
std = np.zeros((1,X.shape[1]))
mu = np.mean(X_norm,0)
std = np.std(X_norm,0)
for i in range(X.shape[1]):
X_norm[:,i] = (X_norm[:,i] - mu[i]) / std[i]
return X_norm,mu,std

3. 损失值的计算

def loss(X,y,w):
m = len(y)
J = 0
J = (np.transpose(X*w - y))*(X*w - y) / (2*m)
print(J)
return J

4. 梯度下降算法的python实现

def gradientDescent(X,y,w,lr,num_iters):
m = len(y) #获取数据集长度
n = len(w) #获取每个输入数据的维度
temp = np.matrix(np.zeros((n,num_iters)))
J_history = np.zeros((num_iters,1))
for i in range(num_iters): #进行迭代
h = np.dot(X,w) #线性回归的矢量表达式
temp[:,i] = w - ((lr/m)*(np.dot(np.transpose(X),h-y))) #梯度的计算
w = temp[:,i]
J_history[i] = loss(X,y,w)
return w,J_history

5. 绘制损失值随迭代次数变化的曲线图

def plotLoss(J_history,num_iters):
x = np.arange(1,num_iters+1)
plt.plot(x,J_history)
plt.xlabel("num_iters")
plt.ylabel("loss")
plt.title("Loss value changes with the number of iterations")
plt.show()

6. 主函数

if __name__ == "__main__":
X,y = read_data()
X,mu,sigma = feature_normalization(X)
m = len(y) #样本的总个数
X = np.hstack((np.ones((m,1)),X)) #在x上加上1列是为了计算偏移b X=[x0,x1,x2,......xm] 其中x0=1 y = x*w
y = y.reshape((-1,1))
lr = 0.01
num_iters = 400
w = np.random.normal(scale=0.01, size=((X.shape[1],1)))
theta,J_history = gradientDescent(X,y,w,lr,num_iters)
plotLoss(J_history,num_iters)

7.结果

线性回归 python 代码实现的更多相关文章

  1. 线性回归——Python代码实现

    import numpy as np def computer_error_for_give_point(w, b, points): # 计算出 观测值与计算值 之间的误差, 并累加,最后返回 平均 ...

  2. 梯度下降法的python代码实现(多元线性回归)

    梯度下降法的python代码实现(多元线性回归最小化损失函数) 1.梯度下降法主要用来最小化损失函数,是一种比较常用的最优化方法,其具体包含了以下两种不同的方式:批量梯度下降法(沿着梯度变化最快的方向 ...

  3. 【机器学习】线性回归python实现

    线性回归原理介绍 线性回归python实现 线性回归sklearn实现 这里使用python实现线性回归,没有使用sklearn等机器学习框架,目的是帮助理解算法的原理. 写了三个例子,分别是单变量的 ...

  4. 机器学习/逻辑回归(logistic regression)/--附python代码

    个人分类: 机器学习 本文为吴恩达<机器学习>课程的读书笔记,并用python实现. 前一篇讲了线性回归,这一篇讲逻辑回归,有了上一篇的基础,这一篇的内容会显得比较简单. 逻辑回归(log ...

  5. 一元回归1_基础(python代码实现)

    python机器学习-乳腺癌细胞挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&u ...

  6. 李宏毅机器学习课程笔记-2.5线性回归Python实战

    本文为作者学习李宏毅机器学习课程时参照样例完成homework1的记录. 任务描述(Task Description) 现在有某地空气质量的观测数据,请使用线性回归拟合数据,预测PM2.5. 数据集描 ...

  7. 可爱的豆子——使用Beans思想让Python代码更易维护

    title: 可爱的豆子--使用Beans思想让Python代码更易维护 toc: false comments: true date: 2016-06-19 21:43:33 tags: [Pyth ...

  8. if __name__== "__main__" 的意思(作用)python代码复用

    if __name__== "__main__" 的意思(作用)python代码复用 转自:大步's Blog  http://www.dabu.info/if-__-name__ ...

  9. Python 代码风格

    1 原则 在开始讨论Python社区所采用的具体标准或是由其他人推荐的建议之前,考虑一些总体原则非常重要. 请记住可读性标准的目标是提升可读性.这些规则存在的目的就是为了帮助人读写代码,而不是相反. ...

随机推荐

  1. [C++] 重载运算符与类型转换(1)

      1.形式:返回值 operator符号(参数列表){}   2.不能被重载的运算符::: 作用域运算符  .*   . 成员访问运算符   ?: 条件运算符:某些运算符(逗号,,取地址&, ...

  2. postgresql从库搭建

    1 复制类型 PostgreSQL支持物理复制(流复制)及逻辑复制2种.通过流复制技术,可以从实例级复制出一个与主库一模一样的实例级的从库.流复制同步方式有同步.异步两种. 另一种复制方式为逻辑复制, ...

  3. Android Adapter的一些记录

    一.摘要 An Adapter object acts as a bridge between an AdapterView and the underlying data for that view ...

  4. Django序列化&django REST framework

    第一章.Django序列化操作 1.django的view实现商品列表页(基于View类) # 通过json来序列化,但手写字典key代码量较大,容易出错:还有遇到时间,图片序列化会报错 from g ...

  5. jquery图片放大插件鼠标悬停图片放大效果

    都知道jquery都插件是非常强大的,最近分享点jquery插件效果,方便效果开发使用. 一.HTML代码 <!DOCTYPE html PUBLIC "-//W3C//DTD XHT ...

  6. Spring只定义接口自动代理接口实现类

    能够扫描到包 @ComponentScan("org.zxp.esclientrhl") ESCRegistrar类主要实现ImportBeanDefinitionRegistra ...

  7. 主流视觉SLAM、激光SLAM总结

    SLAM预备知识 SLAM for Dummies 全文总结 视觉里程计 卡尔曼滤波推导 MonoSLAM MonoSLAM:Real-Time Single Camera SLAM全文总结 PTAM ...

  8. 列表 元祖 range

    1.列表 list 存放一些数据的容器 比如 衣柜 书包 作用:存储一些数据,数据量比较大 可以下标 可以切片 可以步长 和字符串的完全一样 lst = [1,2,3] print(lst) #[1, ...

  9. 品Spring:对@Resource注解的处理方法

    @Resource是Java的注解,表示一个资源,它具有双向的含义,一个是从外部获取一个资源,一个是向外部提供一个资源. 这其实就对应于Spring的注入和注册.当它用在字段和方法上时,表示前者.当它 ...

  10. Flask上下文管理机制流程(源码剖析)

    Flask请求上下文管理 1 偏函数 partial 使用该方式可以生成一个新函数 from functools import partial def mod( n, m ): return n % ...