利用opencv进行移动物体检测
进行运动物体检测就是将动态的前景从静态的背景中分离出来。将当前画面与假设是静态背景进行比较发现有明显的变化的区域,就可以认为该区域出现移动的物体。在实际情况中由于光照阴影等因素干扰比较大,通过像素直接进行比较往往很容易造成误检。因此有不少算法被开发出来在进行前后景分离的时候对运动和其他因素造成的变动进行区分。opencv中提供了多种背景减除的算法,其中基于高斯混合模型(GMM)的cv2.BackgroundSubtractorMOG()
和cv2.BackgroundSubtractorMOG2()
已经基于贝叶斯模型的cv2.bgsegm.createBackgroundSubtractorGMG()
最为常用。
1) GMM法
GMM进行前后景分离最早是在2001年的文章An improved adaptive background mixture model for real-time tracking with shadow detection
中提出的。其设计思路为:
- 在不知道图像历史的时候,假设每个像素点的值都是可以分解为一组adaptive Gaussian。adaptive是由于需要跟随光照条件的变化而变化。
- 像素值的历史由一组高斯分布进行建模,包括每个分布的权重。
- 每次新图像输入的时候都会用这一组高斯分布进行评估,如果像素匹配上其中一个分布就会认为这个像素属于背景,而高斯分布的均值和方差等参数会用当前像素的值进行更新。
- 标记为前景的像素通过connected component analysis进行分组。
opencv的cv2.BackgroundSubtractorMOG()
的函数就是对次方法的实现。
基于2004年提出的Improved adaptive Gausian mixture model for background subtractio
和2006年提出的Efficient Adaptive Density Estimation per Image Pixel for the Task of Background Subtraction
算法对上述GMM算法进行改良的就是opencv的cv2.BackgroundSubtractorMOG2()
的函数。主要的提升是对每个像素都选择合适数量的高斯分布而非原来的全部相同的个数。此外,这个函数还允许是否检测阴影。
使用方法(以MOG2为例)
import cv2
cam = cv2.VideoCapture(0)
fgbg = cv2.createBackgroundSubtractorMOG()
while cam.isOpened():
ret, frame = cam.read()
if ret:
fgmask = fgbg.apply(frame)
# 通过腐蚀和膨胀过滤一些噪声
erode = cv2.erode(fgmask, (21, 21), iterations=1)
dilate = cv2.dilate(fgmask, (21, 21), iterations=1)
(_, cnts, _) = cv2.findContours(dilate.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for c in cnts:
c_area = cv2.contourArea(c)
if c_area < 1600 or c_area > 16000: # 过滤太小或太大的运动物体,这类误检概率比较高
continue
(x, y, w, h) = cv2.boundingRect(c)
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 0, 255), 2)
cv2.imshow("origin", frame)
if cv2.waitKey(1) == ord('q'):
break
cv2.destroyAllWindows()
2)GMG法
根据2012年的文章Visual Tracking of Human Visitors under Variable-Lighting Conditions for a Responsive Audio Art Installation
, opencv开发了相应的函数cv2.bgsegm.createBackgroundSubtractorGMG()
(好像在3.2中被放到了contrib中,在之前可以直接用cv2.createBackgroundSubtractorGMG()
进行调用)。这个方法默认使用前120张图片进行背景的建模,并使用概率前景分割算法找到可能的前景(基于贝叶斯推测)。为了更好适应不同光照变化的影响,新的图片的权重比旧图片要高。
使用方法
cam = cv2.VideoCapture(0)
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (8, 8))
fgbg = cv2.bgsegm.createBackgroundSubtractorGMG(initializationFrames=10)
while cam.isOpened():
ret, frame = cam.read()
if ret:
fgmask = fgbg.apply(frame)
fgmask = cv2.morphologyEx(fgmask, cv2.MORPH_OPEN, kernel) # 过滤噪声
(_, cnts, _) = cv2.findContours(dilate.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for c in cnts:
c_area = cv2.contourArea(c)
if c_area < 1600 or c_area > 16000: # 过滤太小或太大的运动物体,这类误检概率比较高
continue
(x, y, w, h) = cv2.boundingRect(c)
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 0, 255), 2)
cv2.imshow("origin", frame)
if cv2.waitKey(1) == ord('q'):
break
cv2.destroyAllWindows()
参考:
- https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_video/py_bg_subtraction/py_bg_subtraction.html
- http://android4arduino.com/computer-vision/motion-detection/
- https://www.pyimagesearch.com/2015/05/25/basic-motion-detection-and-tracking-with-python-and-opencv/
- https://docs.opencv.org/3.0-beta/modules/video/doc/motion_analysis_and_object_tracking.html?highlight=createbackgroundsubtractormog
利用opencv进行移动物体检测的更多相关文章
- opencv,关于物体检测
关于物体检测 环境:opencv 2.4.11+vs2013 参考: http://www.cnblogs.com/tornadomeet/archive/2012/06/02/2531705.htm ...
- OpenCV学习 物体检测 人脸识别 填充颜色
介绍 OpenCV是开源计算机视觉和机器学习库.包含成千上万优化过的算法.项目地址:http://opencv.org/about.html.官方文档:http://docs.opencv.org/m ...
- OpenCV 使用光流法检测物体运动
OpenCV 可以使用光流法检测物体运动,贴上代码以及效果. // opticalflow.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" ...
- [PyImageSearch] Ubuntu16.04 使用深度学习和OpenCV实现物体检测
上一篇博文中讲到如何用OpenCV实现物体分类,但是接下来这篇博文将会告诉你图片中物体的位置具体在哪里. 我们将会知道如何使用OpenCV‘s的dnn模块去加载一个预训练的物体检测网络,它能使得我们将 ...
- OpenCV平面物体检测
平面物体检测 这个教程的目标是学习如何使用 features2d 和 calib3d 模块来检测场景中的已知平面物体. 测试数据: 数据图像文件,比如 “box.png”或者“box_in_scene ...
- 利用modelarts和物体检测方式识别验证码
近来有朋友让老山帮忙识别验证码.在github上查看了下,目前开源社区中主要流行以下几种验证码识别方式: tesseract-ocr模块: 这是HP实验室开发由Google 维护的开源 OCR引擎,内 ...
- OpenCV神技——人脸检测,猫脸检测
简介 OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux.Windows.Android和Mac OS操作系统上.它轻量级而且高效--由一系列 C 函数和少量 ...
- 如何利用OpenCV自带的级联分类器训练程序训练分类器
介绍 使用级联分类器工作包括两个阶段:训练和检测. 检测部分在OpenCVobjdetect 模块的文档中有介绍,在那个文档中给出了一些级联分类器的基本介绍.当前的指南描述了如何训练分类器:准备训练数 ...
- OPENCV图像特征点检测与FAST检测算法
前面描述角点检测的时候说到,角点其实也是一种图像特征点,对于一张图像来说,特征点分为三种形式包括边缘,焦点和斑点,在OPENCV中,加上角点检测,总共提供了以下的图像特征点检测方法 FAST SURF ...
随机推荐
- Java 适配器模式
在阎宏博士的<JAVA与模式>一书中开头是这样描述适配器(Adapter)模式的: 适配器模式把一个类的接口变换成客户端所期待的另一种接口,从而使原本因接口不匹配而无法在一起工作的两个类能 ...
- Aizu2249 Road Construction(dijkstra优化+思路 好题)
https://vjudge.net/problem/Aizu-2249 感觉这题和2017女生赛的Deleting Edge思路很像,都是先找最短路,然后替换边的. 但是这题用最朴素的dijkstr ...
- HTML5 学习05—— 拖放(Drag 和 Drop)
拖放(Drag 和 drop)是 HTML5 标准的组成部分.即抓取对象以后拖到另一个位置. 例:将w3cschool图标拖动到矩形框中. <script> function allowD ...
- Accounting Calendar template
SELECT INITCAP (TO_CHAR (TO_DATE (&year || '-' || LPAD (ROWNUM, 2, '0'), 'yyyy-mm'), 'MON', 'NLS ...
- ElasticSearch的基本原理与用法
一.简介 ElasticSearch和Solr都是基于Lucene的搜索引擎,不过ElasticSearch天生支持分布式,而Solr是4.0版本后的SolrCloud才是分布式版本,Solr的分布式 ...
- RabbitMQ 可靠投递
RabbitMQ 可靠投递 标签: RabbitMQ shovel-plugin ConfirmCallback RabbitMQ消息投递 背景 confirmCallback 确认模式 return ...
- SpringBoot项目接口第一次访问慢的问题
SpringBoot的接口第一次访问都很慢,通过日志可以发现,dispatcherServlet不是一开始就加载的,有访问才开始加载的,即懒加载. 2019-01-25 15:23:46.264 IN ...
- self.location.href
self.location.href;//当前页面打开URL页面 window.location.href;//当前页面打开URL页面 this.location.href;//当前页面打开URL页面 ...
- jvm系列
一.jvm理论 1.1.jvm理论-总述 1.2.jvm理论-class文件 1.2.1.jvm理论-常量池-string 1.2.2.jvm理论-常量池-8种基本类型 1.3.jvm理论-字节码指令 ...
- 解决Android Studio出现GC overhead limit exceeded
方法一: 修改项目目录下的gradle.properties,增加如下配置信息(红色文字中需要根据自己电脑的配置修改内存大小,其余的配置用于加快gradle的编译速度) org.gradle.daem ...