给出一个数字n,计算从1到n能组成几个不同的三角形。

n的范围是10^6,大概就是递推吧。从F[i-1]到F[i]可以线性求出。要注意结果超出int。

#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; long long dp[];
int N; int main()
{
dp[] = ;
dp[] = ;
dp[] = ; for(int i=;i<;i++)
{
long long k = i-;
if(k&)
dp[i] = dp[i-]+(k+)*(k+)/;
else
dp[i] = dp[i-]+ k*(k+)/;
} while(~scanf("%d",&N) && N>=)
{
printf("%lld\n",dp[N]);
}
}

UVA11401-Triangle Counting-递推的更多相关文章

  1. uva11401:Triangle Counting 递推 数学

    uva11401:Triangle Counting 题目读不清楚的下场就是多做两个小时...从1-n中任选3个不重复数字(不重复啊!!坑爹啊!)问能组成三角形的有多少个, 显然1~n能组成的三角形集 ...

  2. Leetcode 118 Pascal's Triangle 数论递推

    杨辉三角,即组合数 递推 class Solution { vector<vector<int>> v; public: Solution() { ; i < ; ++i ...

  3. UVA11401 Triangle Counting

    题意 输入\(n\),输出有多少种方法可以从\(1,2,3,\dots,n\)中选出3个不同的整数,使得以他们为三边长可以组成三角形. \(n \leq 10^6\) 分析 参照刘汝佳的题解. 按最大 ...

  4. Leetcode 119 Pascal's Triangle II 数论递推

    杨辉三角,这次要输出第rowIndex行 用滚动数组t进行递推 t[(i+1)%2][j] = t[i%2][j] + t[i%2][j - 1]; class Solution { public: ...

  5. 递推DP POJ 1163 The Triangle

    题目传送门 题意:找一条从顶部到底部的一条路径,往左下或右下走,使得经过的数字和最大. 分析:递推的经典题目,自底向上递推.当状态保存在a[n][j]时可省去dp数组,空间可优化. 代码1: /*** ...

  6. 【计数】【UVA11401】 Triangle Counting

    传送门 Description 把1……n这n个数中任取3个数,求能组成一个三角形的方案个数 Input 多组数据,对于每组数据,包括: 一行一个数i,代表前i个数. 输入结束标识为i<3. O ...

  7. POJ 3046 Ant Counting(递推,和号优化)

    计数类的问题,要求不重复,把每种物品单独考虑. 将和号递推可以把转移优化O(1). f[i = 第i种物品][j = 总数量为j] = 方案数 f[i][j] = sigma{f[i-1][j-k], ...

  8. Pyramid of Glasses(递推)

    Pyramid of Glasses time limit per test 1 second memory limit per test 256 megabytes input standard i ...

  9. 【BZOJ-2476】战场的数目 矩阵乘法 + 递推

    2476: 战场的数目 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 58  Solved: 38[Submit][Status][Discuss] D ...

  10. 从一道NOI练习题说递推和递归

    一.递推: 所谓递推,简单理解就是推导数列的通项公式.先举一个简单的例子(另一个NOI练习题,但不是这次要解的问题): 楼梯有n(100 > n > 0)阶台阶,上楼时可以一步上1阶,也可 ...

随机推荐

  1. Redis 参数说明

    4. Redis的配置 4.1. Redis默认不是以守护进程的方式运行,可以通过该配置项修改,使用yes启用守护进程 daemonize no 4.2. 当Redis以守护进程方式运行时,Redis ...

  2. saltstack学习之一:服务架构以及相关配置安装运行

    概要 saltstack是基于Python开发的C/S架构的一款批量管理工具,底层采用动态的连接总线(ZeroMQ消息队列pub/sub方式通信),使用ssl证书签发的方式进行认证管理,使其可以用于编 ...

  3. wpf项目打开多个窗体在任务栏只有一个任务

    原文:wpf项目打开多个窗体在任务栏只有一个任务 如果在wpf里,在一个父窗体上打开子窗体,只在任务栏显示一个任务,不是qq聊天窗口俩人聊天人显示俩给那样,只能显示 一个 private void B ...

  4. 代码无错就是优?简单工厂模式 C#

    还是那几句话: 学无止境,精益求精 十年河东,十年河西,莫欺少年穷 学历代表你的过去,能力代表你的现在,学习代表你的将来 废话不多说,直接进入正题: 现在给你一道面试题,如下: 请用C++,C#,Ja ...

  5. Codeforces 996E Leaving the Bar (随机化)

    题目连接:Leaving the Bar 题意:给你n个向量,你可以加这个向量或减这个向量,使得这些向量之和的长度小于1.5e6. 题解: 按照正常的贪心方法,最后的结果有可能大于1.5e6 .这里我 ...

  6. SQL行转列汇总 (转)

    PIVOT 用于将列值旋转为列名(即行转列),在 SQL Server 2000可以用聚合函数配合CASE语句实现 PIVOT 的一般语法是:PIVOT(聚合函数(列) FOR 列 in (…) )A ...

  7. Linux内核分析— —扒开系统调用的三层皮(下)

    课程主要内容有三点: 在MenuOS中通过添加代码增加自定义的系统调用命令 使用gdb跟踪调试内核 简单分析system_call代码了解系统调用在内核代码中的处理过程 实验——分析system_ca ...

  8. SuperMaze(Hello World 团队)Alpha版使用说明

    一.产品介绍 超级迷宫是一款android的手机游戏,目前我们已经在PC 端成功实现大体功能,虽然虽然迷宫游戏不少但我们的游戏渐渐的会假如自己的特色功能,尽量吸引用户,通过游戏开发智力,通过游戏打发无 ...

  9. Running kubernetes on windows

    docker-for-desktop minikube GKE cluster(?) docker-for-desktop https://docs.docker.com/docker-for-win ...

  10. activiti-ldap-integration

    https://stackoverflow.com/questions/19488764/activiti-ldap-integration https://community.alfresco.co ...