建出点分树,每个节点维护其作为点分树上lca对子树内点的贡献,线段树维护即可,同时另开一个线段树以减掉父亲重复的贡献。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 100010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,m,p[N],size[N],deep[N],fa[N][19],t;
bool flag[N];
struct data{int to,nxt;
}edge[N<<1];
void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
void dfs(int k)
{
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=fa[k][0])
{
fa[edge[i].to][0]=k;
deep[edge[i].to]=deep[k]+1;
dfs(edge[i].to);
}
}
int lca(int x,int y)
{
if (deep[x]<deep[y]) swap(x,y);
for (int j=18;~j;j--) if (deep[fa[x][j]]>=deep[y]) x=fa[x][j];
if (x==y) return x;
for (int j=18;~j;j--) if (fa[x][j]!=fa[y][j]) x=fa[x][j],y=fa[y][j];
return fa[x][0];
}
int dis(int x,int y){return deep[x]+deep[y]-(deep[lca(x,y)]<<1);}
namespace newtree
{
int rt,cnt[2],root[2][N],fa[N];
struct data{int l,r,x;}tree[2][N<<7];
void addedge(int x,int y){fa[y]=x;}
void add(int &k,int l,int r,int p,int x,int op)
{
if (!k) k=++cnt[op];
tree[op][k].x+=x;
if (l==r) return;
int mid=l+r>>1;
if (p<=mid) add(tree[op][k].l,l,mid,p,x,op);
else add(tree[op][k].r,mid+1,r,p,x,op);
}
int sum(int k,int l,int r,int x,int op)
{
if (!k) return 0;
if (l==r) return tree[op][k].x;
int mid=l+r>>1;
if (x<=mid) return sum(tree[op][k].l,l,mid,x,op);
else return tree[op][tree[op][k].l].x+sum(tree[op][k].r,mid+1,r,x,op);
}
void modify(int x,int d,int w)
{
add(root[0][x],0,n,0,w,0),add(root[0][x],0,n,d+1,-w,0);
int i=x;
while (i!=rt)
{
int D=dis(x,fa[i]);
if (D<=d)
add(root[0][fa[i]],0,n,0,w,0),add(root[0][fa[i]],0,n,d-D+1,-w,0),
add(root[1][i],0,n,0,-w,1),add(root[1][i],0,n,d-D+1,w,1);
i=fa[i];
}
}
int query(int x)
{
int ans=0,i=x;
while (i) ans+=sum(root[0][i],0,n,dis(x,i),0),ans+=sum(root[1][i],0,n,dis(x,fa[i]),1),i=fa[i];
return ans;
}
}
void make(int k,int from)
{
size[k]=1;
for (int i=p[k];i;i=edge[i].nxt)
if (!flag[edge[i].to]&&edge[i].to!=from)
{
make(edge[i].to,k);
size[k]+=size[edge[i].to];
}
}
int findroot(int k,int from,int s)
{
int mx=0;
for (int i=p[k];i;i=edge[i].nxt)
if (!flag[edge[i].to]&&edge[i].to!=from&&size[edge[i].to]>size[mx]) mx=edge[i].to;
if ((size[mx]<<1)>s) return findroot(mx,k,s);
else return k;
}
int build(int k)
{
make(k,k);
flag[k=findroot(k,k,size[k])]=1;
for (int i=p[k];i;i=edge[i].nxt)
if (!flag[edge[i].to]) newtree::addedge(k,build(edge[i].to));
return k;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4372.in","r",stdin);
freopen("bzoj4372.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
for (int i=1;i<n;i++)
{
int x=read(),y=read();
addedge(x,y),addedge(y,x);
}
fa[1][0]=1;dfs(1);
for (int j=1;j<19;j++)
for (int i=1;i<=n;i++)
fa[i][j]=fa[fa[i][j-1]][j-1];
newtree::rt=build(1);
while (m--)
{
char c=getc();
if (c=='M')
{
int x=read(),d=read(),w=read();
newtree::modify(x,d,w);
}
else printf("%d\n",newtree::query(read()));
}
return 0;
}

  

BZOJ4372 烁烁的游戏(动态点分治+线段树)的更多相关文章

  1. BZOJ4372烁烁的游戏——动态点分治+线段树(点分树套线段树)

    题目描述 背景:烁烁很喜欢爬树,这吓坏了树上的皮皮鼠.题意:给定一颗n个节点的树,边权均为1,初始树上没有皮皮鼠.烁烁他每次会跳到一个节点u,把周围与他距离不超过d的节点各吸引出w只皮皮鼠.皮皮鼠会被 ...

  2. [bzoj4372] 烁烁的游戏 [动态点分治+线段树+容斥原理]

    题面 传送门 思路 观察一下题目,要求的是修改"距离点$u$的距离一定的点权值",那这个就不能用传统的dfs序类算法+线段树维护,因为涉及到向父亲回溯的问题 看到和树上距离相关的东 ...

  3. [BZOJ4372]烁烁的游戏(动态点分治+线段树)

    和[BZOJ3730]震波几乎一样,每个点建两棵线段树分别代表它的管辖范围内以它为LCA的路径的贡献和它对父亲的贡献. 注意点分树上的点的距离在原树上不单调,所以不能有若距离超出限制就break之类的 ...

  4. 【bzoj4372】烁烁的游戏 动态点分治+线段树

    题目描述 给一颗n个节点的树,边权均为1,初始点权均为0,m次操作:Q x:询问x的点权.M x d w:将树上与节点x距离不超过d的节点的点权均加上w. 输入 第一行两个正整数:n,m接下来的n-1 ...

  5. bzoj 4372: 烁烁的游戏 动态点分治_树链剖分_线段树

    [Submit][Status][Discuss] Description 背景:烁烁很喜欢爬树,这吓坏了树上的皮皮鼠. 题意: 给定一颗n个节点的树,边权均为1,初始树上没有皮皮鼠. 烁烁他每次会跳 ...

  6. BZOJ4372: 烁烁的游戏(动态点分治)

    Description 背景:烁烁很喜欢爬树,这吓坏了树上的皮皮鼠.题意:给定一颗n个节点的树,边权均为1,初始树上没有皮皮鼠.烁烁他每次会跳到一个节点u,把周围与他距离不超过d的节点各吸引出w只皮皮 ...

  7. 【loj6145】「2017 山东三轮集训 Day7」Easy 动态点分治+线段树

    题目描述 给你一棵 $n$ 个点的树,边有边权.$m$ 次询问,每次给出 $l$ .$r$ .$x$ ,求 $\text{Min}_{i=l}^r\text{dis}(i,x)$ . $n,m\le ...

  8. 【bzoj3730】震波 动态点分治+线段树

    题目描述 在一片土地上有N个城市,通过N-1条无向边互相连接,形成一棵树的结构,相邻两个城市的距离为1,其中第i个城市的价值为value[i].不幸的是,这片土地常常发生地震,并且随着时代的发展,城市 ...

  9. 2019ICPC上海网络赛 A Lightning Routing I 点分树(动态点分治)+线段树

    题意 给一颗带边权的树,有两种操作 \(C~e_i~w_i\),将第\(e_i\)条边的边权改为\(w_i\). \(Q~v_i\),询问距\(v_i\)点最远的点的距离. 分析 官方题解做法:动态维 ...

随机推荐

  1. LeetCode202:Happy Number 。C#版,在vs2010中通过,leetcode中Wrong Answer

    static List<int> nums = new List<int>(); public static bool IsHappy(int n) { int newint ...

  2. ASP.NET Core中获取完整的URL(转载)

    在之前的ASP.NET中,可以通过 Request.Url.AbsoluteUri 获取,但在ASP.NET Core没有这个实现,请问如何获取呢?方法一:先引用“using Microsoft.As ...

  3. LOJ540 游戏 构造

    传送门 题意:给出$N$,试构造一个点数小于$500$的图,使得其中三元环的个数恰好为$N$.$N \leq 2 \times 10^6$ 首先构造一个尽可能大的完全图,然后在这个完全图旁边加点.尽可 ...

  4. Sql_连接查询中on筛选与where筛选的区别

    sql中的连接查询分为3种, cross join,inner join,和outer join ,  在 cross join和inner join中,筛选条件放在on后面还是where后面是没区别 ...

  5. 从零开始搭建属于你的React/redux/webpack脚手架

    大家好,我是苏南,今天要给大家分享的是<<我的react入门到放弃之路>>,当然,也不是真的放弃啦--哈哈,这篇博客原本是从17年初写的,一直没有在csdn发布,希望今天不会太 ...

  6. 基于 CentOS 搭建 FTP 文件服务

    https://www.linuxidc.com/Linux/2017-11/148518.htm

  7. C. Meme Problem

    链接 [http://codeforces.com/contest/1076/problem/C] 题意 a+b=d and a⋅b=d. 计算出a和b 分析 ab=a(d-a)=d aa-ad+d= ...

  8. 【个人阅读作业】软件工程M1/M2总结

    链接:”看<快速软件开发>的五个问题“ http://www.cnblogs.com/leiyy/p/4027759.html 一.较为明白的问题 1. 在文章的第一个关于Square_T ...

  9. BugPhobia开发篇章:Beta阶段第IX次Scrum Meeting

    0x01 :Scrum Meeting基本摘要 Beta阶段第九次Scrum Meeting 敏捷开发起始时间 2015/12/25 00:00 A.M. 敏捷开发终止时间 2015/12/28 23 ...

  10. Linux课题实践一

    Linux课题实践一 20135318 刘浩晨 1.1应用安装 (1)掌握软件源的维护方法,配置系统使用软件源镜像  删除过期或者重复的软件包:进入”系统设置“-”软件和更新”-”ubuntu软件“- ...