要统计所有路径的信息,那我们考虑点分治,每次算经过分治中心的路径的贡献。然而路径的颜色数量实在是不好统计,既然只需要求从每个点出发的所有路径的颜色数量之和,那换一种思路,改为求从每个点出发包含某种颜色的路径数量之和。这两者显然是等价的。

  考虑在点分治过程中怎么算这个东西。首先算出每种颜色被多少条由根到分治块中的点的路径(特别地,根本身也是一条路径)包含。这个可以dfs求出,dfs时用桶记录一下当前出现了哪些颜色,若出现新颜色就记录并把该颜色的贡献加上当前点的子树大小。之后利用这个统计,计算某子树的答案时先把该子树贡献减去,dfs到某个点时把这个点的颜色的贡献改为由根到其他子树的路径条数,更新总贡献并更新该点的答案。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 100010
int n,color[N],p[N],size[N],cnt[N],tag[N],t=;
long long ans[N],tot;
bool flag[N];
struct data{int to,nxt;
}edge[N<<];
void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
void makes(int k,int from)
{
size[k]=;
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=from&&!flag[edge[i].to])
{
makes(edge[i].to,k);
size[k]+=size[edge[i].to];
}
}
int findroot(int k,int s,int from)
{
int mx=;
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=from&&!flag[edge[i].to]&&size[edge[i].to]>size[mx]) mx=edge[i].to;
if ((size[mx]<<)>s) return findroot(mx,s,k);
else return k;
}
void calc(int k,int from,int v)
{
if (!tag[color[k]]) cnt[color[k]]+=size[k]*v,tot+=size[k]*v;
tag[color[k]]++;
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=from&&!flag[edge[i].to]) calc(edge[i].to,k,v);
tag[color[k]]--;
}
void work(int k,int from,int s)
{
int tmp=cnt[color[k]];tot+=s-cnt[color[k]];cnt[color[k]]=s;
ans[k]+=tot;
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=from&&!flag[edge[i].to]) work(edge[i].to,k,s);
cnt[color[k]]=tmp;tot-=s-cnt[color[k]];
}
void solve(int k)
{
makes(k,k);
k=findroot(k,size[k],k);flag[k]=;
makes(k,k);
tot=;
calc(k,k,);
ans[k]+=tot;
tag[color[k]]=;
for (int i=p[k];i;i=edge[i].nxt)
if (!flag[edge[i].to])
{
calc(edge[i].to,k,-);
cnt[color[k]]=size[k]-size[edge[i].to];tot-=size[edge[i].to];
work(edge[i].to,k,size[k]-size[edge[i].to]);
tot+=size[edge[i].to];cnt[color[k]]=size[k];
calc(edge[i].to,k,);
}
tag[color[k]]=;
calc(k,k,-);
for (int i=p[k];i;i=edge[i].nxt)
if (!flag[edge[i].to]) solve(edge[i].to);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("game.in","r",stdin);
freopen("game.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=;i<=n;i++) color[i]=read();
for (int i=;i<n;i++)
{
int x=read(),y=read();
addedge(x,y),addedge(y,x);
}
solve();
for (int i=;i<=n;i++) printf(LL,ans[i]);
return ;
}

Luogu2264 树上游戏(点分治)的更多相关文章

  1. 洛谷P2664 树上游戏(点分治)

    题意 题目链接 Sol 神仙题..Orz yyb 考虑点分治,那么每次我们只需要统计以当前点为\(LCA\)的点对之间的贡献以及\(LCA\)到所有点的贡献. 一个很神仙的思路是,对于任意两个点对的路 ...

  2. 洛谷P2664 树上游戏——点分治

    原题链接 被点分治虐的心态爆炸了 题解 发现直接统计路径上的颜色数量很难,考虑转化一下统计方式.对于某一种颜色\(c\),它对一个点的贡献为从这个点出发且包含这种颜色的路径条数. 于是我们先点分一下, ...

  3. 【洛谷P2664】 树上游戏 点分治

    code: #include <bits/stdc++.h> #define N 200009 #define ll long long #define setIO(s) freopen( ...

  4. 【Luogu2664】树上游戏(点分治)

    [Luogu2664]树上游戏(点分治) 题面 洛谷 题解 很好的一道点分治题. 首先直接点分治,考虑过每个分治重心的链的贡献. 我们从分治重心开始找每种颜色,强制令一种颜色只在其到分治重心的链上第一 ...

  5. 洛谷 P2664 树上游戏 解题报告

    P2664 树上游戏 题目描述 \(\text{lrb}\)有一棵树,树的每个节点有个颜色.给一个长度为\(n\)的颜色序列,定义\(s(i,j)\) 为 \(i\) 到 \(j\) 的颜色数量.以及 ...

  6. P2664 树上游戏

    P2664 树上游戏 https://www.luogu.org/problemnew/show/P2664 分析: 点分治. 首先关于答案的统计转化成计算每个颜色的贡献. 1.计算从根出发的路径的答 ...

  7. Luogu P2664 树上游戏 dfs+树上统计

    题目: P2664 树上游戏 分析: 本来是练习点分治的时候看到了这道题.无意中发现题解中有一种方法可以O(N)解决这道题,就去膜拜了一下. 这个方法是,假如对于某一种颜色,将所有这种颜色的点全部删去 ...

  8. LG2664 树上游戏

    树上游戏 题目描述 lrb有一棵树,树的每个节点有个颜色.给一个长度为n的颜色序列,定义s(i,j) 为i 到j 的颜色数量.以及 $$sum_i=\sum_{j=1}^ns(i,j)$$ 现在他想让 ...

  9. poj1741 树上的点分治

    题意: 一棵10000个点的树,每条边的长不超过1000,给定一个值k,问距离不超过k的点对数有多少.(多组数据) 输入样例: 5 4 1 2 3 1 3 1 1 4 2 3 5 1 0 0输出样例: ...

随机推荐

  1. LeetCode202:Happy Number 。C#版,在vs2010中通过,leetcode中Wrong Answer

    static List<int> nums = new List<int>(); public static bool IsHappy(int n) { int newint ...

  2. Luogu P4137 Rmq Problem / mex

    区间mex问题,可以使用经典的记录上一次位置之后再上主席树解决. 不过主席树好像不是很好写哈,那我们写莫队吧 考虑每一次维护什么东西,首先记一个答案,同时开一个数组记录一下每一个数出现的次数. 然后些 ...

  3. [Spark][python]从 web log 中提取出 UserID 作为key 值,形成新的 RDD

    针对RDD, 使用 keyBy 来构筑 key-line 对: [training@localhost ~]$ cat webs.log 56.31.230.188 - 90700 "GET ...

  4. 安装zkpython出错

    pip3 install zkpython==0.4.2 提示:zookeeper.c:20:23: 致命错误:zookeeper.h:没有那个文件或目录 解决: 1.是否安装python-devel ...

  5. [转载]sql 盲注之正则表达式攻击

    [转载]sql 盲注之正则表达式攻击 -----------------------------------------MYSQL 5+-------------------------------- ...

  6. spring-session-data-redis包冲突

    包冲突 spring 的包很容易冲突, 因为写软件的人在兼容性上处理的不够,一般不检测重复加载. spring-session-data-redis 引用后, 一定要把 spring-session ...

  7. 1017 B. The Bits

    链接 [http://codeforces.com/contest/1017/problem/B] 题意 给你两个长度为n,包含0和1的字符串a和b,有一种操作swap a中的任意两个字符使得a&am ...

  8. 总结 推广app

    扫一扫二维码即可安装使用我们的app,方便快捷. 电脑端下载地址:http://pan.baidu.com/s/1bocWPPX http://a.app.qq.com/o/simple.jsp?pk ...

  9. BugPhobia进阶篇章:功能规格说明书

    0x01 :特别鸣谢 首先特别鸣谢<构建之法>中并没有给出固定化格式的功能规格说明书的样例,因此在此次的说明书中将尽可能用生动形象的例子展示软件交互阐释 因此受到它本身的启发,此次团队功能 ...

  10. Flask-论坛开发-5-memcached缓存系统

    对Flask感兴趣的,可以看下这个视频教程:http://study.163.com/course/courseLearn.htm?courseId=1004091002 ### 介绍:哪些情况下适合 ...