Codeforces.888G.Xor-MST(Borůvka算法求MST 贪心 Trie)
\(Description\)
有一张\(n\)个点的完全图,每个点的权值为\(a_i\),两个点之间的边权为\(a_i\ xor\ a_j\)。求该图的最小生成树。
\(n\leq2*10^5,0\leq ai<2^{30}\)。
\(Solution\)
代码好神啊。
依旧是从高到低考虑每一位。对于当前位i,如果所有点在这一位都为0或1,不需要管(任何边在这一位都为0)。
否则可以把点分为两个集合,即i位为0和1的集合,这两个集合间必须存在一条边,且边权这一位只能为1。
考虑怎么高效得到两个集合间的最小边。可以将一个集合的\(a_i\)插入Trie,再枚举另一个集合的点在Trie上走。
这样枚举每一位然后合并两个集合的点,再递归到两边(该位为0或1),就可以得到MST了。
这也是Borůvka算法的过程,不过用Trie可以将每次需\(O(m)\)的迭代优化到\(O(n\log a_{max})\)。
实现细节:可以先对所有点建Trie,并直接在Trie树上DFS,存在左右儿子时即会分为两个集合。
将\(a_i\)从小到大插入Trie,这样可对每个节点维护一个区间,表示 满足根到该节点01取值 的序列下标区间。这样枚举时就不需要暴力\(O(n)\)了。
复杂度\(O(n\log n\log a_{max})\)。基本到不了吧。(或者我分析错了吧)
//171ms 98200KB
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 300000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
#define BIT 29
typedef long long LL;
const int N=2e5+5;
int read();
char IN[MAXIN],*SS=IN,*TT=IN;
struct Trie
{
#define ls son[x][0]
#define rs son[x][1]
#define S N*31
int n,A[N],tot,son[S][2],L[S],R[S];
LL Ans;
#undef S
void Insert(int v,int id)
{
int x=0;
for(int i=BIT; ~i; --i)
{
int c=v>>i&1;
if(!son[x][c]) son[x][c]=++tot, L[tot]=R[tot]=id;
x=son[x][c];
L[x]=std::min(L[x],id), R[x]=std::max(R[x],id);
}
}
int Query(int x,int v,int bit)
{
if(bit<0||L[x]==R[x]) return A[L[x]];//同样注意第0位还可以继续递归==
int c=v>>bit&1;
return son[x][c]?Query(son[x][c],v,bit-1):(son[x][c^1]?Query(son[x][c^1],v,bit-1):0);
}
void DFS(int x,int bit)
{
// if(bit<0) return;
if(!bit)
{
if(ls&&rs) Ans+=A[L[ls]]^A[L[rs]];//第0位还会有分叉
return;
}
if(ls&&rs)
{
int res=0x7fffffff;
for(int i=L[ls],r=R[ls],p=rs; i<=r; ++i)
res=std::min(res,A[i]^Query(p,A[i],bit-1));
Ans+=res;
}
if(ls) DFS(ls,bit-1);
if(rs) DFS(rs,bit-1);
}
void Solve()
{
n=read();
for(int i=1; i<=n; ++i) A[i]=read();
std::sort(A+1,A+1+n);
for(int i=1; i<=n; ++i) Insert(A[i],i);
DFS(0,BIT), printf("%I64d\n",Ans);
}
}T;
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
int main()
{
T.Solve();
return 0;
}
Codeforces.888G.Xor-MST(Borůvka算法求MST 贪心 Trie)的更多相关文章
- Borůvka (Sollin) 算法求 MST 最小生成树
基本思路: 用定点数组记录每个子树的最近邻居. 对于每一条边进行处理: 如果这条边连成的两个顶点同属于一个集合,则不处理,否则检测这条边连接的两个子树,如果是连接这两个子树的最小边,则更新 (合并). ...
- 最小生成树-Borůvka算法
一般求最小生成树的时候,最流行的是Kruskal算法,一种基于拟阵证明的贪心,通过给边排序再扫描一次边集,利用并查集优化得到,复杂度为\(O(ElogE)\).另一种用得比较少的是Prim算法,利用优 ...
- Kruskal vs Borůvka
做了个对比.Borůvka算法对于稠密图效果特别好.这两个都是求生成森林的算法.Prim+heap+tarjan过于难写不写了. V=200,E=1000 Kruskal method 4875048 ...
- 克鲁斯卡尔(Kruskal)算法求最小生成树
/* *Kruskal算法求MST */ #include <iostream> #include <cstdio> #include <cstring> #inc ...
- Prim求MST最小生成树
最小生成树即在一个图中用最小权值的边将所有点连接起来.prim算法求MST其实它的主要思路和dijkstra的松弛操作十分相似 prim算法思想:在图中随便找一个点开始这里我们假定起点为“1”,以点1 ...
- 【做题】CSA72G - MST and Rectangles——Borůvka&线段树
原文链接 https://www.cnblogs.com/cly-none/p/CSA72G.html 题意:有一个\(n \times n\)的矩阵\(A\),\(m\)次操作,每次在\(A\)上三 ...
- Borůvka algorithm
Borůvka algorithm 我好无聊啊,直接把wiki的算法介绍翻译一下把. wiki关于Borůvka algorithm的链接:链接 Borůvka algorithm是一个在所有边权都是 ...
- Gym 101873D - Pants On Fire - [warshall算法求传递闭包]
题目链接:http://codeforces.com/gym/101873/problem/D 题意: 给出 $n$ 个事实,表述为 "XXX are worse than YYY" ...
- C++迪杰斯特拉算法求最短路径
一:算法历史 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以 ...
随机推荐
- Android Studio xml文件中的布局预览视图
操作系统:Windows 10 x64 IDE:Android Studio 3.3.1 更新了Android Studio之后,xml文件中的布局预览视图变得如此简洁! 原因是没有勾选Show La ...
- linux学习笔记之 basename, dirname
前言: basename: 用于打印目录或者文件的基本名称 dirname: 去除文件名中的非目录部分,仅显示与目录有关的内容.dirname命令读取指定路径名保留最后一个/及其后面的字符,删除其他部 ...
- C++ Primer 笔记——多重继承与虚继承
1.在多重继承中,基类的构造顺序与派生类列表中基类的出现顺序保持一致,与初始值列表中的顺序无关. 2.在C++11新标准中,允许派生类从它的一个或几个基类中继承构造函数.但是如果从多个基类中继承了相同 ...
- netty 学习(1)
Netty使用:通过BootStrap来启动.而BootStrap主要分为两类:1.面向连接(TCP)的(ClientBootStrap和ServerBootStrap);2. 非面向连接(UDP)的 ...
- bootstrap的模拟单选按钮
<div class="btn-group" data-toggle="buttons" id="radio"> <lab ...
- Python自定义排序
比如自定义了一个class,并且实例化了这个类的很多个实例,并且组成一个数组.这个数组要排序,是通过这个class的某个字段来排序的.怎么排序呢? 有两种做法: 第一种是定义__cmp__( )方法: ...
- windows10的文件浏览器中无法搜索文件内容
系统:更新到最新的win10(2018年8月23日 23:54:31) 重现步骤:git clone一个项目,然后切换到它的另一个分支:打开文件夹浏览器(explorer),在右上角里输入想要查找的字 ...
- [转] 那些在使用webpack时踩过的坑
用webpack的过程,就是一个不断入坑和出坑的过程.回望来时路,一路都是坑啊!现把曾经趟过的那些坑整理出来,各位看官有福了~ 文章末尾有我用到的依赖的版本信息,若你发现某个问题与我在本文中的描述不一 ...
- [转] JavaScript 之 ArrayBuffer
JS里的ArrayBuffer 还记得某个晚上在做 canvas 像素级操作,发现存储像素的数据格式并不是Array类型,而是ArrayBuffer,心想这是什么鬼?后来查了一些资料,发现自己这半年来 ...
- UICollectionView的常用方法
class UICollectionView : UIScrollView //初始化,位置,风格 init(frame: CGRect, collectionViewLayout layout: U ...