Python计算特征值与特征向量案例

例子1

import numpy as np
A = np.array([[3,-1],[-1,3]])
print('打印A:\n{}'.format(A))
a, b = np.linalg.eig(A)
print('打印特征值a:\n{}'.format(a))
print('打印特征向量b:\n{}'.format(b))
打印A:
[[ 3 -1]
[-1 3]]
打印特征值a:
[4. 2.]
打印特征向量b:
[[ 0.70710678 0.70710678]
[-0.70710678 0.70710678]]

例子2

import numpy as np
A = np.array([[-1,1,0],[-4,3,0],[1,0,2]])
print('打印A:\n{}'.format(A))
a, b = np.linalg.eig(A)
print('打印特征值a:\n{}'.format(a))
print('打印特征向量b:\n{}'.format(b))
打印A:
[[-1 1 0]
[-4 3 0]
[ 1 0 2]]
打印特征值a:
[2. 1. 1.]
打印特征向量b:
[[ 0. 0.40824829 0.40824829]
[ 0. 0.81649658 0.81649658]
[ 1. -0.40824829 -0.40824829]]

例子3

import numpy as np
A = np.array([[-2,1,1],[0,2,0],[-4,1,3]])
print('打印A:\n{}'.format(A))
a, b = np.linalg.eig(A)
print('打印特征值a:\n{}'.format(a))
print('打印特征向量b:\n{}'.format(b))
打印A:
[[-2 1 1]
[ 0 2 0]
[-4 1 3]]
打印特征值a:
[-1. 2. 2.]
打印特征向量b:
[[-0.70710678 -0.24253563 0.30151134]
[ 0. 0. 0.90453403]
[-0.70710678 -0.9701425 0.30151134]]

特征值

知识点:【奇异矩阵】
  • 判断矩阵是不是方阵(即行数和列数相等的矩阵。若行数和列数不相等,那就谈不上奇异矩阵和非奇异矩阵)。
  • 看矩阵的行列式|A|是否等于0,若等于0,称矩阵A为奇异矩阵;若不等于0,称矩阵A为非奇异矩阵。
    1. 若|A|≠0可知矩阵A可逆,可逆矩阵就是非奇异矩阵,非奇异矩阵也是可逆矩阵。 
    2. 若A为奇异矩阵,则AX=0有无穷解,AX=b有无穷解或者无解。
    3. 若A为非奇异矩阵,则AX=0有且只有唯一零解,AX=b有唯一解。

特征向量

总结:

特征值和特征向量的计算方法:

特征值与特征向量

特征值的性质:

特征向量的性质

 

例题1

 
import numpy as np
A = np.array([[1,2,2],[2,1,2],[2,2,1]])
print('打印A:\n{}'.format(A))
a, b = np.linalg.eig(A)
print('打印特征值a:\n{}'.format(a))
print('打印特征向量b:\n{}'.format(b))
打印A:
[[1 2 2]
[2 1 2]
[2 2 1]]
打印特征值a:
[-1. 5. -1.]
打印特征向量b:
[[-0.81649658 0.57735027 0. ]
[ 0.40824829 0.57735027 -0.70710678]
[ 0.40824829 0.57735027 0.70710678]]

例题2

import numpy as np
A = np.array([[2,-3,1],[1,-2,1],[1,-3,2]])
print('打印A:\n{}'.format(A))
a, b = np.linalg.eig(A)
print('打印特征值a:\n{}'.format(a))
print('打印特征向量b:\n{}'.format(b))
打印A:
[[ 2 -3 1]
[ 1 -2 1]
[ 1 -3 2]]
打印特征值a:
[2.09037533e-15+0.00000000e+00j 1.00000000e+00+5.87474805e-16j
1.00000000e+00-5.87474805e-16j]
打印特征向量b:
[[0.57735027+0.j 0.84946664+0.j 0.84946664-0.j ]
[0.57735027+0.j 0.34188085-0.11423045j 0.34188085+0.11423045j]
[0.57735027+0.j 0.17617591-0.34269135j 0.17617591+0.34269135j]]

例题3

import numpy as np
A = np.array([[2,-1,2],[5,-3,3],[-1,0,-2]])
print('打印A:\n{}'.format(A))
a, b = np.linalg.eig(A)
print('打印特征值a:\n{}'.format(a))
print('打印特征向量b:\n{}'.format(b))
打印A:
[[ 2 -1 2]
[ 5 -3 3]
[-1 0 -2]]
打印特征值a:
[-0.99998465+0.00000000e+00j -1.00000768+1.32949166e-05j
-1.00000768-1.32949166e-05j]
打印特征向量b:
[[ 0.57735027+0.00000000e+00j 0.57735027+7.67588259e-06j
0.57735027-7.67588259e-06j]
[ 0.57735913+0.00000000e+00j 0.57734584+1.53518830e-05j
0.57734584-1.53518830e-05j]
[-0.57734141+0.00000000e+00j -0.5773547 +0.00000000e+00j
-0.5773547 -0.00000000e+00j]]
 
 
 
 

Python与矩阵论——特征值与特征向量的更多相关文章

  1. python计算平面的法向-利用协方差矩阵求解特征值和特征向量

    Obvious,最小特征值对应的特征向量为平面的法向 这个问题还有个关键是通过python求协方差矩阵的特征值和特征向量,np.linalg.eig()方法直接返回了特征值的向量和特征向量的矩阵 sc ...

  2. 利用python做矩阵的简单运算(行列式、特征值、特征向量等的求解)

    import numpy as np lis = np.mat([[1,2,3],[3,4,5],[4,5,6]]) print(np.linalg.inv(lis)) # 求矩阵的逆矩阵 [[-1. ...

  3. 采用梯度下降优化器(Gradient Descent optimizer)结合禁忌搜索(Tabu Search)求解矩阵的全部特征值和特征向量

    [前言] 对于矩阵(Matrix)的特征值(Eigens)求解,采用数值分析(Number Analysis)的方法有一些,我熟知的是针对实对称矩阵(Real Symmetric Matrix)的特征 ...

  4. 矩阵的特征值和特征向量的雅克比算法C/C++实现

    矩阵的特征值和特征向量是线性代数以及矩阵论中很重要的一个概念.在遥感领域也是经经常使用到.比方多光谱以及高光谱图像的主成分分析要求解波段间协方差矩阵或者相关系数矩阵的特征值和特征向量. 依据普通线性代 ...

  5. c语言计算矩阵特征值和特征向量-1(幂法)

    #include <stdio.h> #include <math.h> #include <stdlib.h> #define M 3 //方阵的行数 列数 #d ...

  6. (原)使用mkl计算特征值和特征向量

    转载请注明出处: http://www.cnblogs.com/darkknightzh/p/5585271.html 参考文档:mkl官方文档 lapack_int LAPACKE_sgeev(in ...

  7. opencv学习之路(38)、Mat像素统计基础——均值,标准差,协方差;特征值,特征向量

    本文部分内容转自 https://www.cnblogs.com/chaosimple/p/3182157.html 一.统计学概念 二.为什么需要协方差 三.协方差矩阵 注:上述协方差矩阵还需要除以 ...

  8. eig()函数求特征值、特征向量、归一化

    在MATLAB中,计算矩阵A的特征值和特征向量的函数是eig(A),常用的调用格式有 5种:(1) E=eig(A):求矩阵A的全部特征值,构成向量E. 想求最大特征值用:max(eig(A))就好了 ...

  9. 特征值、特征向量与PCA算法

    一.复习几个矩阵的基本知识 1. 向量 1)既有大小又有方向的量成为向量,物理学中也被称为矢量,向量的坐标表示a=(2,3),意为a=2*i + 3*j,其中i,j分别是x,y轴的单位向量. 2)向量 ...

随机推荐

  1. 【CV】ICCV2015_Learning Temporal Embeddings for Complex Video Analysis

    Learning Temporal Embeddings for Complex Video Analysis Note here: it's a review note on novel work ...

  2. java注解的简单介绍

    什么是注解 1.注解就是Annontation,Annontation是Java5开始引入的新特征,中文名称叫做注解,它提供了一种安全的类似注释的机制,可以起到减少配置的成果,给程序起到辅助性的作用 ...

  3. Java面向对象(Eclipse高级、类与接口作为参数返回值)

      面向对象 今日内容介绍 u Eclipse常用快捷键操作 u Eclipse文档注释导出帮助文档 u Eclipse项目的jar包导出与使用jar包 u 不同修饰符混合使用细节 u 辨析何时定义变 ...

  4. [读书笔记]Linux命令行与shell编程读书笔记03 文件系统等

    1. 文件系统的种类 ext ext2 ext3 ext4 JFS XFS 其中ext3 开始支持journal日志模式 与raid卡类似 有 数据模式  排序模式 以及回写模式 数据模式最安全 回写 ...

  5. ESXi虚拟机出现关机时卡住的问题处理

    1. ESXi在日常使用时经常会遇到机器卡住的情况 这种情况下GUI的方式无从下手, 需要从cli的方式处理 我记得之前写过一个 但是不知道放哪里去了. 再重新写一下. 直接按照图处理 2. 然后xs ...

  6. Mysql误删表中数据与误删表的恢复方法

    由于头两天面试时被问了这样一个问题,如果某同事误删了某个表,你该怎么恢复? 当时想了一下,因为博主没有遇到过这个问题,但是也多少了解一些,所以就回答通过mysql的binlog日志进行恢复. 面试官当 ...

  7. BZOJ3786星系探索——非旋转treap(平衡树动态维护dfs序)

    题目描述 物理学家小C的研究正遇到某个瓶颈. 他正在研究的是一个星系,这个星系中有n个星球,其中有一个主星球(方便起见我们默认其为1号星球),其余的所有星球均有且仅有一个依赖星球.主星球没有依赖星球. ...

  8. Network of Schools POJ - 1236(强连通+缩点)

    题目大意 有N个学校,这些学校之间用一些单向边连接,若学校A连接到学校B(B不一定连接到A),那么给学校A发一套软件,则学校B也可以获得.现给出学校之间的连接关系,求出至少给几个学校分发软件,才能使得 ...

  9. Java中浮点型数据Float和Double进行精确计算的问题

    Java中浮点型数据Float和Double进行精确计算的问题 来源  https://www.cnblogs.com/banxian/p/3781130.html 一.浮点计算中发生精度丢失     ...

  10. BZOJ 4009: [HNOI2015]接水果

    4009: [HNOI2015]接水果 Time Limit: 60 Sec  Memory Limit: 512 MBSubmit: 636  Solved: 300[Submit][Status] ...