java 变量及数据类型、原码、反码、补码
Java基础——变量及数据类型
- 变量的概念
- 内存中的一个存储区域
- 变量名+数据类型
- 可在同一类型范围内不断变化
- 为什么定义变量:
- 用于不断的存放同一类型的常量,并可以重复使用
- 使用变量注意:
- 变量的作用范围,一对{}之间有效
- 初始化值
- 定义变量的格式:
- 数据类型 变量名=初始化值
- eg: int x = 4
- 注:格式固定
- 理解:变量就如同数学中的未知数。
- 数据类型:
小数默认类型为:double
占用内存及取值范围
小数默认类型为:double
占用内存及取值范围
整型 |
占用存储空间(字节) |
大小范围 |
byte |
1 |
-128 ~ 127 |
short |
2 |
-215~ 215-1 |
int |
4 |
-231~ 231-1 |
long |
8 |
-263 ~ 263-1 |
浮点型 |
|
|
float |
4 |
-3.403E38~3.403E38 |
double |
8 |
-1.798E308~1.798E308 |
字符型 |
|
|
char |
2(采用Unicode编码) |
|
布尔类型 |
|
|
boolean |
1/8(其实是1位) |
|
解析:为何byte占用一个字节,取值范围是-128~127
首先需要了解在二进制中,最高位是符号位,0表示正、1表示负,其他位是数据位。
byte共占8个bit,表示256个数(28)。
最大值为01111111,转成十进制为127
最小值为10000000,1是符号位,表示负数,转成十进制为128。所以最小值为-128
具体为什么是-128?二进制和十进制如何在底层转换?将涉及到原码、反码、补码,且听下篇分析。
Java基础——原码、反码、补码
一. 机器数和真值
在学习原码, 反码和补码之前, 需要先了解机器数和真值的概念.
1、机器数
一个数在计算机中的二进制表示形式, 叫做这个数的机器数。机器数是带符号的,在计算机用一个数的最高位存放符号, 正数为0, 负数为1.
比如,十进制中的数 +3 ,计算机字长为8位,转换成二进制就是00000011。
如果是 -3 ,就是 10000011 。
那么,这里的 00000011 和 10000011 就是机器数。
2、真值
因为第一位是符号位,所以机器数的形式值就不等于真正的数值。
例如上面的有符号数10000011,其最高位1代表负,其真正数值是-3而不是形式值131(10000011转换成十进制等于131)。
所以,为区别起见,将带符号位的机器数对应的真正数值称为机器数的真值。
例:0000 0001的真值 = +000 0001 = +1,1000 0001的真值 = –000 0001 = –1
二. 原码, 反码, 补码的基础概念和计算方法.
在探求为何机器要使用补码之前, 让我们先了解原码, 反码和补码的概念.对于一个数, 计算机要使用一定的编码方式进行存储.原码, 反码, 补码是机器存储一个具体数字的编码方式.
1. 原码
原码就是符号位加上真值的绝对值, 即用第一位表示符号, 其余位表示值. 比如如果是8位
二进制:
[+1]原 = 0000 0001
[-1]原 = 1000 0001
第一位是符号位. 因为第一位是符号位, 所以8位二进制数的取值范围就是:
[1111 1111 , 0111 1111]
即
[-127 , 127]
原码是人脑最容易理解和计算的表示方式.
2. 反码
反码的表示方法是:
正数的反码是其本身
负数的反码是在其原码的基础上, 符号位不变,其余各个位取反.
[+1] = [00000001]原 = [00000001]反
[-1] = [10000001]原 = [11111110]反
可见如果一个反码表示的是负数, 人脑无法直观的看出来它的数值. 通常要将其转换成原码再计算.
3. 补码
补码的表示方法是:
正数的补码就是其本身
负数的补码是在其原码的基础上, 符号位不变, 其余各位取反, 最后+1. (即在反码的基础上+1)
[+1] = [00000001]原 = [00000001]反 = [00000001]补
[-1] = [10000001]原 = [11111110]反 = [11111111]补
对于负数, 补码表示方式也是人脑无法直观看出其数值的. 通常也需要转换成原码在计算其数值.
三. 为何要使用原码, 反码和补码
在开始深入学习前, 我的学习建议是先"死记硬背"上面的原码, 反码和补码的表示方式以及计算方法.
现在我们知道了计算机可以有三种编码方式表示一个数. 对于正数因为三种编码方式的结果都相同:
[+1] = [00000001]原 = [00000001]反 = [00000001]补
所以不需要过多解释. 但是对于负数:
[-1] = [10000001]原 = [11111110]反 = [11111111]补
可见原码, 反码和补码是完全不同的. 既然原码才是被人脑直接识别并用于计算表示方式, 为何还会有反码和补码呢?
首先, 因为人脑可以知道第一位是符号位, 在计算的时候我们会根据符号位, 选择对真值区域的加减.(真值的概念在本文最开头). 但是对于计算机, 加减乘数已经是最基础的运算, 要设计的尽量简单. 计算机辨别"符号位"显然会让计算机的基础电路设计变得十分复杂! 于是人们想出了将符号位也参与运算的方法. 我们知道, 根据运算法则减去一个正数等于加上一个负数, 即: 1-1 = 1 + (-1) = 0 , 所以机器可以只有加法而没有减法, 这样计算机运算的设计就更简单了.
于是人们开始探索将符号位参与运算, 并且只保留加法的方法. 首先来看原码:
计算十进制的表达式: 1-1=0
1 - 1 = 1 + (-1) = [00000001]原 + [10000001]原 = [10000010]原 = -2
如果用原码表示, 让符号位也参与计算, 显然对于减法来说, 结果是不正确的.这也就是为何计算机内部不使用原码表示一个数.
为了解决原码做减法的问题, 出现了反码:
计算十进制的表达式: 1-1=0
1 - 1 = 1 + (-1) = [0000 0001]原 + [1000 0001]原= [0000 0001]反 + [1111 1110]反 = [1111 1111]反 = [1000 0000]原 = -0
发现用反码计算减法, 结果的真值部分是正确的. 而唯一的问题其实就出现在"0"这个特殊的数值上.
虽然人们理解上+0和-0是一样的, 但是0带符号是没有任何意义的. 而且会有[0000 0000]原和[1000 0000]原两个编码表示0.
于是补码的出现, 解决了0的符号以及两个编码的问题:
1-1 = 1 + (-1) = [0000 0001]原 + [1000 0001]原 = [0000 0001]补 + [1111 1111]补 = [0000 0000]补=[0000 0000]原
这样0用[0000 0000]表示, 而以前出现问题的-0则不存在了.而且可以用[1000 0000]表示-128:
(-1) + (-127) = [1000 0001]原 + [1111 1111]原 = [1111 1111]补 + [1000 0001]补 = [1000 0000]补
-1-127的结果应该是-128, 在用补码运算的结果中, [1000 0000]补 就是-128.但是注意因为实际上是使用以前的-0的补码来表示-128, 所以-128并没有原码和反码表示.
(对-128的补码表示[1000 0000]补算出来的原码是[0000 0000]原, 这是不正确的)
使用补码, 不仅仅修复了0的符号以及存在两个编码的问题, 而且还能够多表示一个最低数. 这就是为什么8位二进制, 使用原码或反码表示的范围为[-127, +127], 而使用补码表示的范围为[-128, 127].
因为机器使用补码, 所以对于编程中常用到的32位int类型, 可以表示范围是: [-231, 231-1] 因为第一位表示的是符号位.而使用补码表示时又可以多保存一个最小值.
四 原码, 反码, 补码 再深入
计算机巧妙地把符号位参与运算, 并且将减法变成了加法, 背后蕴含了怎样的数学原理呢?
将钟表想象成是一个1位的12进制数. 如果当前时间是6点, 我希望将时间设置成4点, 需要怎么做呢?
我们可以:
1. 往回拨2个小时: 6 - 2 = 4
2. 往前拨10个小时: (6 + 10) mod 12 = 4
3. 往前拨10+12=22个小时: (6+22) mod 12 =4
2,3方法中的mod是指取模操作, 16 mod 12 =4 即用16除以12后的余数是4.
所以钟表往回拨(减法)的结果可以用往前拨(加法)替代!
现在的焦点就落在了如何用一个正数, 来替代一个负数. 上面的例子我们能感觉出来一些端倪, 发现一些规律. 但是数学是严谨的. 不能靠感觉.
首先介绍一个数学中相关的概念: 同余
同余的概念
两个整数a,b,若它们除以整数m所得的余数相等,则称a,b对于模m同余
记作 a ≡ b (mod m)
读作 a 与 b 关于模 m 同余。
举例说明:
4 mod 12 = 4
16 mod 12 = 4
28 mod 12 = 4
所以4, 16, 28关于模 12 同余.
负数取模
正数进行mod运算是很简单的. 但是负数呢?
下面是关于mod运算的数学定义:
上面是截图, "取下界"符号找不到如何输入(word中粘贴过来后乱码). 下面是使用"L"和"J"替换上图的
"取下界"符号:
x mod y = x - y L x / y J
上面公式的意思是:
x mod y等于 x 减去 y 乘上 x与y的商的下界.
以 -3 mod 2 举例:
-3 mod 2
= -3 - 2xL -3/2 J
= -3 - 2xL-1.5J
= -3 - 2x(-2)
= -3 + 4 = 1
所以:
(-2) mod 12 = 12-2=10
(-4) mod 12 = 12-4 = 8
(-5) mod 12 = 12 - 5 = 7
开始证明
再回到时钟的问题上:
回拨2小时 = 前拨10小时
回拨4小时 = 前拨8小时
回拨5小时= 前拨7小时
注意, 这里发现的规律!
结合上面学到的同余的概念.实际上:
(-2) mod 12 = 10
10 mod 12 = 10
-2与10是同余的.
(-4) mod 12 = 8
8 mod 12 = 8
-4与8是同余的.
距离成功越来越近了. 要实现用正数替代负数, 只需要运用同余数的两个定理:
反身性:
a ≡ a (mod m)
这个定理是很显而易见的.
线性运算定理:
如果a ≡ b (mod m),c ≡ d (mod m) 那么:
(1)a ± c ≡ b ± d (mod m)
(2)a * c ≡ b * d (mod m)
如果想看这个定理的证明, 请看:http://baike.baidu.com/view/79282.htm
所以:
7 ≡ 7 (mod 12)
(-2) ≡ 10 (mod 12)
7 -2 ≡ 7 + 10 (mod 12)
现在我们为一个负数, 找到了它的正数同余数. 但是并不是7-2 = 7+10,
而是 7 -2 ≡ 7 + 10 (mod 12) , 即计算结果的余数相等.
接下来回到二进制的问题上, 看一下: 2-1=1的问题.
2-1=2+(-1) = [0000 0010]原 + [1000 0001]原= [0000 0010]反 + [1111 1110]反
先到这一步, -1的反码表示是1111 1110. 如果这里将[1111 1110]认为是原码,则[1111 1110]原 = -126, 这里将符号位除去, 即认为是126.
发现有如下规律:
(-1) mod 127 = 126
126 mod 127 = 126
即:
(-1) ≡ 126 (mod 127)
2-1 ≡ 2+126 (mod 127)
2-1 与 2+126的余数结果是相同的! 而这个余数, 正式我们的期望的计算结果: 2-1=1
所以说一个数的反码, 实际上是这个数对于一个膜的同余数. 而这个膜并不是我们的二进制, 而是所能表示的最大值! 这就和钟表一样, 转了一圈后总能找到在可表示范围内的一个正确的数值!
而2+126很显然相当于钟表转过了一轮, 而因为符号位是参与计算的, 正好和溢出的最高位形成正确的运算结果.
既然反码可以将减法变成加法, 那么现在计算机使用的补码呢? 为什么在反码的基础上加1, 还能得到正确的结果?
2-1=2+(-1) = [0000 0010]原 + [1000 0001]原 = [0000 0010]补 + [1111 1111]补
如果把[1111 1111]当成原码, 去除符号位, 则:
[0111 1111]原 = 127
其实, 在反码的基础上+1, 只是相当于增加了膜的值:
(-1) mod 128 = 127
127 mod 128 = 127
2-1 ≡ 2+127 (mod 128)
此时, 表盘相当于每128个刻度转一轮. 所以用补码表示的运算结果最小值和最大值应该是[-128, 128].
但是由于0的特殊情况, 没有办法表示128, 所以补码的取值范围是[-128, 127]
java 变量及数据类型、原码、反码、补码的更多相关文章
- 大数据学习--day02(标识符、变量、数据类型、类型转换、进制转换、原码反码补码)
标识符.变量.数据类型.类型转换.进制转换.原码反码补码 标识符: java50个关键字不能做标识符,以数字开头不能做标识符(这个老是忘记写一个类名的时候) 变量: 变量分为成员变量和局部变量,注意作 ...
- JAVA:二进制(原码 反码 补码),位运算,移位运算,约瑟夫问题(5)
一.二进制,位运算,移位运算 1.二进制 对于原码, 反码, 补码而言, 需要注意以下几点: (1).Java中没有无符号数, 换言之, Java中的数都是有符号的; (2).二进制的最高位是符号位, ...
- Java学习第五篇:二进制(原码 反码 补码),位运算,移位运算,约瑟夫问题
一.二进制,位运算,移位运算 1.二进制 对于原码, 反码, 补码而言, 需要注意以下几点: (1).Java中没有无符号数, 换言之, Java中的数都是有符号的; (2).二进制的最高位是符号位, ...
- Java基础-原码反码补码
Java基础-原码反码补码 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 注意,我们这里举列的原码和反码只是为了求负数的补码,在计算机中没有原码,反码的存在,只有补码. 一.原码 ...
- java原码反码补码以及位运算
原码, 反码, 补码的基础概念和计算方法. 对于一个数, 计算机要使用一定的编码方式进行存储. 原码, 反码, 补码是机器存储一个具体数字的编码方式. 1. 原码 原码就是符号位加上真值的绝对值, 即 ...
- java基础知识-原码,反码,补码
1.正数:原码,反码,补码:都一样. 2.负数:和正数的储存方式不同,负数都是以补码形式存储的. <1>负数的补码 把负数的原码除了符号位取反后再+1. <2>负数的原码 把对 ...
- Java 原码 反码 补码
本篇文章讲解了计算机的原码, 反码和补码. 并且进行了深入探求了为何要使用反码和补码, 以及更进一步的论证了为何可以用反码, 补码的加法计算原码的减法. 论证部分如有不对的地方请各位牛人帮忙指正! 希 ...
- C语言原码反码补码与位运算.
目录: 一.机器数和真值 二.原码,反码和补码的基础概念 三.为什么要使用原码,反码和补码 四.原码,补码,反码再深入 五.数据溢出测试 六.位运算 ...
- 「C语言」原码反码补码与位运算
尽管能查到各种文献,亲自归纳出自己的体系还是更能加深对该知识的理解. 本篇文章便是在结合百度百科有关原码.反码.补码和位运算的介绍并深度借鉴了张子秋和Liquor相关文章后整理而出. 目录 ...
- 位移&二进制转换&原码&反码&补码
<< 左移 按二进制形式把所有的数字向左移动对应的位数,高位移出(舍弃),低位的空位补零. 格式 需要移位的数字 << 移位的次数 计算过程 1. 按二进制形式把所有的数字向左 ...
随机推荐
- 解决如下问题:You are using pip version 8.1.1, however version 18.0 is available. You should consider upgrading via the 'pip install --upgrade pip' command.
问题描述: 今天想学习一下TUM数据集RGBD-Benchmark工具的使用,利用python进行相关操作时,缺少一个第三方模块,于是打算用pip进行安装,便出现如下图所示的问题. 解决办法: 执行如 ...
- 使用 Java 8 语言功能
Android Studio 3.0 及以上版本支持所有 Java 7 语言功能,以及部分 Java 8 语言功能(具体因平台版本而异). 本页介绍您可以使用的 Java 8 语言功能.如何正确配置项 ...
- 自定义控件详解(四):Paint 画笔路径效果
Paint 画笔 ,即用来绘制图形的"笔" 前面我们知道了Paint的一些基本用法: paint.setAntiAlias(true);//抗锯齿功能 paint.setColo ...
- MVP模式及性能优化
1.base BaseActivity public abstract class BaseActivity<V,P extends BasePresenter<V>>exte ...
- 使用spark DStream的foreachRDD时要注意哪些坑?
答案: 两个坑, 性能坑和线程坑 DStream是抽象类,它把连续的数据流拆成很多的小RDD数据块, 这叫做“微批次”, spark的流式处理, 都是“微批次处理”. DStream内部实现上有批次处 ...
- NoSQL&Redis
1.介绍NoSQL NoSQL(Not Only SQL):不仅仅是SQL,是一项全新的数据库理念,泛指非关系型数据库,原来我们所使用的MySQL.Oracle.Microsoft SQL Serve ...
- ALSA声卡驱动的DAPM(二)-建立过程
在上一篇文章中,我们重点介绍了widget.path.route之间的关系及其widget的注册: http://www.cnblogs.com/linhaostudy/p/8509899.html ...
- ubuntu 配置拼音输入法步骤
今天配置了一下 ubuntu 拼音,要求使用ubuntu 内置拼音.大致步骤我记录一下: 配置拼音,使用 ibus pinyin,网上有很多帖子大致步骤: 1)安装 中文语言 2)安装ibus 3) ...
- 模糊查询sql语句条件是中文在后台从数据库查不到结果,是英文和字母就可以,而且统一编码为UTF-8了!!!
4.在mysql安装目录下打开my.ini文件 5.保存,接着打开电脑的服务选项,将MySQL 重启 6. 重启后重新进入dos 窗口的MySQL ,输入show variables like &qu ...
- 错误: 无法访问InstrumentationTestRunner 找不到android.test.InstrumentationTestRunner的类文件
错误: 无法访问InstrumentationTestRunner找不到android.test.InstrumentationTestRunner的类文件