本系列文章经补充和完善,已修订整理成书《Java编程的逻辑》,由机械工业出版社华章分社出版,于2018年1月上市热销,读者好评如潮!各大网店和书店有售,欢迎购买,京东自营链接http://item.jd.com/12299018.html


上节初步介绍了Java 8中的函数式数据处理,对于collect方法,我们只是演示了其最基本的应用,它还有很多强大的功能,比如,可以分组统计汇总,实现类似数据库查询语言SQL中的group by功能。

具体都有哪些功能?有什么用?如何使用?基本原理是什么?本节进行详细讨论,我们先来进一步理解下collect方法。

理解collect

上节中,过滤得到90分以上的学生列表,代码是这样的:

List<Student> above90List = students.stream()
.filter(t->t.getScore()>90)
.collect(Collectors.toList());

最后的collect调用看上去很神奇,它到底是怎么把Stream转换为List<Student>的呢?先看下collect方法的定义:

<R, A> R collect(Collector<? super T, A, R> collector)

它接受一个收集器collector作为参数,类型是Collector,这是一个接口,它的定义基本是:

public interface Collector<T, A, R> {
Supplier<A> supplier();
BiConsumer<A, T> accumulator();
BinaryOperator<A> combiner();
Function<A, R> finisher();
Set<Characteristics> characteristics();
}

在顺序流中,collect方法与这些接口方法的交互大概是这样的:

//首先调用工厂方法supplier创建一个存放处理状态的容器container,类型为A
A container = collector.supplier().get(); //然后对流中的每一个元素t,调用累加器accumulator,参数为累计状态container和当前元素t
for (T t : data)
collector.accumulator().accept(container, t); //最后调用finisher对累计状态container进行可能的调整,类型转换(A转换为R),并返回结果
return collector.finisher().apply(container);

combiner只在并行流中有用,用于合并部分结果。characteristics用于标示收集器的特征,Collector接口的调用者可以利用这些特征进行一些优化,Characteristics是一个枚举,有三个值:CONCURRENT, UNORDERED和IDENTITY_FINISH,它们的含义我们后面通过例子简要说明,目前可以忽略。

Collectors.toList()具体是什么呢?看下代码:

public static <T>
Collector<T, ?, List<T>> toList() {
return new CollectorImpl<>((Supplier<List<T>>) ArrayList::new, List::add,
(left, right) -> { left.addAll(right); return left; },
CH_ID);
}

它的实现类是CollectorImpl,这是Collectors内部的一个私有类,实现很简单,主要就是定义了两个构造方法,接受函数式参数并赋值给内部变量。对toList来说:

  • supplier的实现是ArrayList::new,也就是创建一个ArrayList作为容器
  • accumulator的实现是List::add,也就是将碰到的每一个元素加到列表中,
  • 第三个参数是combiner,表示合并结果
  • 第四个参数CH_ID是一个静态变量,只有一个特征IDENTITY_FINISH,表示finisher没有什么事情可以做,就是把累计状态container直接返回

也就是说,collect(Collectors.toList())背后的伪代码如下所示:

List<T> container = new ArrayList<>();
for (T t : data)
container.add(t);
return container;

与toList类似的容器收集器还有toSet, toCollection, toMap等,我们来看下。

容器收集器

toSet

toSet的使用与toList类似,只是它可以排重,就不举例了。toList背后的容器是ArrayList,toSet背后的容器是HashSet,其代码为:

public static <T>
Collector<T, ?, Set<T>> toSet() {
return new CollectorImpl<>((Supplier<Set<T>>) HashSet::new, Set::add,
(left, right) -> { left.addAll(right); return left; },
CH_UNORDERED_ID);
}

CH_UNORDERED_ID是一个静态变量,它的特征有两个,一个是IDENTITY_FINISH,表示返回结果即为Supplier创建的HashSet,另一个是UNORDERED,表示收集器不会保留顺序,这也容易理解,因为背后容器是HashSet。

toCollection

toCollection是一个通用的容器收集器,可以用于任何Collection接口的实现类,它接受一个工厂方法Supplier作为参数,具体代码为:

public static <T, C extends Collection<T>>
Collector<T, ?, C> toCollection(Supplier<C> collectionFactory) {
return new CollectorImpl<>(collectionFactory, Collection<T>::add,
(r1, r2) -> { r1.addAll(r2); return r1; },
CH_ID);
}

比如,如果希望排重但又希望保留出现的顺序,可以使用LinkedHashSet,Collector可以这么创建:

Collectors.toCollection(LinkedHashSet::new)

toMap

toMap将元素流转换为一个Map,我们知道,Map有键和值两部分,toMap至少需要两个函数参数,一个将元素转换为键,另一个将元素转换为值,其基本定义为:

public static <T, K, U> Collector<T, ?, Map<K,U>> toMap(
Function<? super T, ? extends K> keyMapper,
Function<? super T, ? extends U> valueMapper)

返回结果为Map<K,U>,keyMapper将元素转换为键,valueMapper将元素转换为值。比如,将学生流转换为学生名称和分数的Map,代码可以为:

Map<String,Double> nameScoreMap = students.stream().collect(
Collectors.toMap(Student::getName, Student::getScore));

这里,Student::getName是keyMapper,Student::getScore是valueMapper。

实践中,经常需要将一个对象列表按主键转换为一个Map,以便以后按照主键进行快速查找,比如,假定Student的主键是id,希望转换学生流为学生id和学生对象的Map,代码可以为:

Map<String, Student> byIdMap = students.stream().collect(
Collectors.toMap(Student::getId, t -> t));

t->t是valueMapper,表示值就是元素本身,这个函数用的比较多,接口Function定义了一个静态函数identity表示它,也就是说,上面的代码可以替换为:

Map<String, Student> byIdMap = students.stream().collect(
Collectors.toMap(Student::getId, Function.identity()));

上面的toMap假定元素的键不能重复,如果有重复的,会抛出异常,比如:

Map<String,Integer> strLenMap = Stream.of("abc","hello","abc").collect(
Collectors.toMap(Function.identity(), t->t.length()));

希望得到字符串与其长度的Map,但由于包含重复字符串"abc",程序会抛出异常。这种情况下,我们希望的是程序忽略后面重复出现的元素,这时,可以使用另一个toMap函数:

public static <T, K, U> Collector<T, ?, Map<K,U>> toMap(
Function<? super T, ? extends K> keyMapper,
Function<? super T, ? extends U> valueMapper,
BinaryOperator<U> mergeFunction)

相比前面的toMap,它接受一个额外的参数mergeFunction,它用于处理冲突,在收集一个新元素时,如果新元素的键已经存在了,系统会将新元素的值与键对应的旧值一起传递给mergeFunction得到一个值,然后用这个值给键赋值。

对于前面字符串长度的例子,新值与旧值其实是一样的,我们可以用任意一个值,代码可以为:

Map<String,Integer> strLenMap = Stream.of("abc","hello","abc").collect(
Collectors.toMap(Function.identity(),
t->t.length(), (oldValue,value)->value));

有时,我们可能希望合并新值与旧值,比如一个联系人列表,对于相同的联系人,我们希望合并电话号码,mergeFunction可以定义为:

BinaryOperator<String> mergeFunction = (oldPhone,phone)->oldPhone+","+phone;

toMap还有一个更为通用的形式:

public static <T, K, U, M extends Map<K, U>> Collector<T, ?, M> toMap(
Function<? super T, ? extends K> keyMapper,
Function<? super T, ? extends U> valueMapper,
BinaryOperator<U> mergeFunction,
Supplier<M> mapSupplier)

相比前面的toMap,多了一个mapSupplier,它是Map的工厂方法,对于前面两个toMap,其mapSupplier其实是HashMap::new。我们知道,HashMap是没有任何顺序的,如果希望保持元素出现的顺序,可以替换为LinkedHashMap,如果希望收集的结果排序,可以使用TreeMap

toMap主要用于顺序流,对于并发流,Collectors有专门的名称为toConcurrentMap的收集器,它内部使用ConcurrentHashMap,用法类似,具体我们就不讨论了。

字符串收集器

除了将元素流收集到容器中,另一个常见的操作是收集为一个字符串。比如,获取所有的学生名称,用逗号连接起来,传统上,代码看上去像这样:

StringBuilder sb = new StringBuilder();
for(Student t : students){
if(sb.length()>0){
sb.append(",");
}
sb.append(t.getName());
}
return sb.toString();

针对这种常见的需求,Collectors提供了joining收集器:

public static Collector<CharSequence, ?, String> joining()
public static Collector<CharSequence, ?, String> joining(CharSequence delimiter)
public static Collector<CharSequence, ?, String> joining(
CharSequence delimiter, CharSequence prefix, CharSequence suffix)

第一个就是简单的把元素连接起来,第二个支持一个分隔符,第三个更为通用,可以给整个结果字符串加个前缀和后缀。比如:

String result = Stream.of("abc","老马","hello")
.collect(Collectors.joining(",", "[", "]"));
System.out.println(result);

输出为:

[abc,老马,hello]

joining的内部也利用了StringBuilder,比如,第一个joining函数的代码为:

public static Collector<CharSequence, ?, String> joining() {
return new CollectorImpl<CharSequence, StringBuilder, String>(
StringBuilder::new, StringBuilder::append,
(r1, r2) -> { r1.append(r2); return r1; },
StringBuilder::toString, CH_NOID);
}

supplier是StringBuilder::new,accumulator是StringBuilder::append,finisher是StringBuilder::toString,CH_NOID表示特征集为空。

分组

分组类似于数据库查询语言SQL中的group by语句,它将元素流中的每个元素分到一个组,可以针对分组再进行处理和收集,分组的功能比较强大,我们逐步来说明。

为便于举例,我们先修改下学生类Student,增加一个字段grade,表示年级,改下构造方法:

public Student(String name, String grade, double score) {
this.name = name;
this.grade = grade;
this.score = score;
}

示例学生列表students改为:

static List<Student> students = Arrays.asList(new Student[] {
new Student("zhangsan", "1", 91d),
new Student("lisi", "2", 89d),
new Student("wangwu", "1", 50d),
new Student("zhaoliu", "2", 78d),
new Student("sunqi", "1", 59d)});           

基本用法

最基本的分组收集器为:

public static <T, K> Collector<T, ?, Map<K, List<T>>>
groupingBy(Function<? super T, ? extends K> classifier)

参数是一个类型为Function的分组器classifier,它将类型为T的元素转换为类型为K的一个值,这个值表示分组值,所有分组值一样的元素会被归为同一个组,放到一个列表中,所以返回值类型是Map<K, List<T>>。 比如,将学生流按照年级进行分组,代码为:

Map<String, List<Student>> groups = students.stream()
.collect(Collectors.groupingBy(Student::getGrade));

学生会分为两组,第一组键为"1",分组学生包括"zhangsan", "wangwu"和"sunqi",第二组键为"2",分组学生包括"lisi", "zhaoliu"。

这段代码基本等同于如下代码:

Map<String, List<Student>> groups = new HashMap<>();
for (Student t : students) {
String key = t.getGrade();
List<Student> container = groups.get(key);
if (container == null) {
container = new ArrayList<>();
groups.put(key, container);
}
container.add(t);
}
System.out.println(groups);

显然,使用groupingBy要简洁清晰的多,但它到底是怎么实现的呢?

基本原理

groupingBy的代码为:

public static <T, K> Collector<T, ?, Map<K, List<T>>>
groupingBy(Function<? super T, ? extends K> classifier) {
return groupingBy(classifier, toList());
}

它调用了第二个groupingBy方法,传递了toList收集器,其代码为:

public static <T, K, A, D>
Collector<T, ?, Map<K, D>> groupingBy(Function<? super T, ? extends K> classifier,
Collector<? super T, A, D> downstream) {
return groupingBy(classifier, HashMap::new, downstream);
}

这个方法接受一个下游收集器downstream作为参数,然后传递给下面更通用的函数:

public static <T, K, D, A, M extends Map<K, D>>
Collector<T, ?, M> groupingBy(Function<? super T, ? extends K> classifier,
Supplier<M> mapFactory,
Collector<? super T, A, D> downstream)

classifier还是分组器,mapFactory是返回Map的工厂方法,默认是HashMap::new,downstream表示下游收集器,下游收集器负责收集同一个分组内元素的结果。

对最通用的groupingBy函数返回的收集器,其收集元素的基本过程和伪代码为:

//先创建一个存放结果的Map
Map map = mapFactory.get();
for (T t : data) {
// 对每一个元素,先分组
K key = classifier.apply(t);
// 找存放分组结果的容器,如果没有,让下游收集器创建,并放到Map中
A container = map.get(key);
if (container == null) {
container = downstream.supplier().get();
map.put(key, container);
}
// 将元素交给下游收集器(即分组收集器)收集
downstream.accumulator().accept(container, t);
}
// 调用分组收集器的finisher方法,转换结果
for (Map.Entry entry : map.entrySet()) {
entry.setValue(downstream.finisher().apply(entry.getValue()));
}
return map;

在最基本的groupingBy函数中,下游收集器是toList,但下游收集器还可以是其他收集器,甚至是groupingBy,以构成多级分组,下面我们来看更多的示例。

分组计数、找最大/最小元素

将元素按一定标准分为多组,然后计算每组的个数,按一定标准找最大或最小元素,这是一个常见的需求,Collectors提供了一些对应的收集器,一般用作下游收集器,比如:

//计数
public static <T> Collector<T, ?, Long> counting()
//计算最大值
public static <T> Collector<T, ?, Optional<T>> maxBy(Comparator<? super T> comparator)
//计算最小值
public static <T> Collector<T, ?, Optional<T>> minBy(Comparator<? super T> comparator)

还有更为通用的名为reducing的归约收集器,我们就不介绍了,下面,看一些例子。

为了便于使用Collectors中的方法,我们将其中的方法静态导入,即加入如下代码:

import static java.util.stream.Collectors.*;

统计每个年级的学生个数,代码可以为:

Map<String, Long> gradeCountMap = students.stream().collect(
groupingBy(Student::getGrade, counting()));

统计一个单词流中每个单词的个数,按出现顺序排序,代码示例为:

Map<String, Long> wordCountMap =
Stream.of("hello","world","abc","hello").collect(
groupingBy(Function.identity(), LinkedHashMap::new, counting()));

获取每个年级分数最高的一个学生,代码可以为:

Map<String, Optional<Student>> topStudentMap = students.stream().collect(
groupingBy(Student::getGrade,
maxBy(Comparator.comparing(Student::getScore))));

需要说明的是,这个分组收集结果是Optional<Student>,而不是Student,这是因为maxBy处理的流可能是空流,但对我们的例子,这是不可能的,为了直接得到Student,可以使用Collectors的另一个收集器collectingAndThen,在得到Optional<Student>后调用Optional的get方法,如下所示:

Map<String, Student> topStudentMap = students.stream().collect(
groupingBy(Student::getGrade,
collectingAndThen(
maxBy(Comparator.comparing(Student::getScore)),
Optional::get)));

关于collectingAndThen,我们待会再进一步讨论。

分组数值统计

除了基本的分组计数,还经常需要进行一些分组数值统计,比如求学生分数的和、平均分、最高分/最低分等,针对int,long和double类型,Collectors提供了专门的收集器,比如:

//求平均值,int和long也有类似方法
public static <T> Collector<T, ?, Double>
averagingDouble(ToDoubleFunction<? super T> mapper)
//求和,long和double也有类似方法
public static <T> Collector<T, ?, Integer>
summingInt(ToIntFunction<? super T> mapper)
//求多种汇总信息,int和double也有类似方法
//LongSummaryStatistics包括个数、最大值、最小值、和、平均值等多种信息
public static <T> Collector<T, ?, LongSummaryStatistics>
summarizingLong(ToLongFunction<? super T> mapper)

比如,按年级统计学生分数信息,代码可以为:

Map<String, DoubleSummaryStatistics> gradeScoreStat =
students.stream().collect(
groupingBy(Student::getGrade,
summarizingDouble(Student::getScore)));

分组内的map

对于每个分组内的元素,我们感兴趣的可能不是元素本身,而是它的某部分信息,在上节介绍的Stream API中,Stream有map方法,可以将元素进行转换,Collectors也为分组元素提供了函数mapping,如下所示:

public static <T, U, A, R>
Collector<T, ?, R> mapping(Function<? super T, ? extends U> mapper,
Collector<? super U, A, R> downstream)

交给下游收集器downstream的不再是元素本身,而是应用转换函数mapper之后的结果。比如,对学生按年级分组,得到学生名称列表,代码可以为:

Map<String, List<String>> gradeNameMap =
students.stream().collect(
groupingBy(Student::getGrade,
mapping(Student::getName, toList())));
System.out.println(gradeNameMap);

输出为:

{1=[zhangsan, wangwu, sunqi], 2=[lisi, zhaoliu]}

分组结果处理(filter/sort/skip/limit)

对分组后的元素,我们可以计数,找最大/最小元素,计算一些数值特征,还可以转换后(map)再收集,那可不可以像上节介绍的Stream API一样,进行排序(sort)、过滤(filter)、限制返回元素(skip/limit)呢?Collector没有专门的收集器,但有一个通用的方法:

public static<T,A,R,RR> Collector<T,A,RR> collectingAndThen(
Collector<T,A,R> downstream, Function<R,RR> finisher)

这个方法接受一个下游收集器downstream和一个finisher,返回一个收集器,它的主要代码为:

return new CollectorImpl<>(downstream.supplier(),
downstream.accumulator(),
downstream.combiner(),
downstream.finisher().andThen(finisher),
characteristics);

也就是说,它在下游收集器的结果上又调用了finisher。利用这个finisher,我们可以实现多种功能,下面看一些例子。

收集完再排序,可以定义如下方法:

public static <T> Collector<T, ?, List<T>> collectingAndSort(
Collector<T, ?, List<T>> downstream,
Comparator<? super T> comparator) {
return Collectors.collectingAndThen(downstream, (r) -> {
r.sort(comparator);
return r;
});
}

比如,将学生按年级分组,分组内学生按照分数由高到低进行排序,利用这个方法,代码可以为:

Map<String, List<Student>> gradeStudentMap =
students.stream().collect(
groupingBy(Student::getGrade,
collectingAndSort(toList(),
Comparator.comparing(Student::getScore).reversed())));

针对这个需求,也可以先对流进行排序,然后再分组。

收集完再过滤,可以定义如下方法:

public static <T> Collector<T, ?, List<T>> collectingAndFilter(
Collector<T, ?, List<T>> downstream,
Predicate<T> predicate) {
return Collectors.collectingAndThen(downstream, (r) -> {
return r.stream().filter(predicate).collect(Collectors.toList());
});
}

比如,将学生按年级分组,分组后,每个分组只保留不及格的学生(低于60分),利用这个方法,代码可以为:

Map<String, List<Student>> gradeStudentMap =
students.stream().collect(
groupingBy(Student::getGrade,
collectingAndFilter(toList(), t->t.getScore()<60)));

针对这个需求,也可以先对流进行过滤,然后再分组。

收集完,只返回特定区间的结果,可以定义如下方法:

public static <T> Collector<T, ?, List<T>> collectingAndSkipLimit(
Collector<T, ?, List<T>> downstream, long skip, long limit) {
return Collectors.collectingAndThen(downstream, (r) -> {
return r.stream().skip(skip).limit(limit).collect(Collectors.toList());
});
}

比如,将学生按年级分组,分组后,每个分组只保留前两名的学生,代码可以为:

Map<String, List<Student>> gradeStudentMap =
students.stream()
.sorted(Comparator.comparing(Student::getScore).reversed())
.collect(groupingBy(Student::getGrade,
collectingAndSkipLimit(toList(), 0, 2)));

这次,我们先对学生流进行了排序,然后再进行了分组。

分区

分组的一个特殊情况是分区,就是将流按true/false分为两个组,Collectors有专门的分区函数:

public static <T> Collector<T, ?, Map<Boolean, List<T>>>
partitioningBy(Predicate<? super T> predicate)
public static <T, D, A> Collector<T, ?, Map<Boolean, D>>
partitioningBy(Predicate<? super T> predicate,
Collector<? super T, A, D> downstream)

第一个的下游收集器为toList(),第二个可以指定一个下游收集器。

比如,将学生按照是否及格(大于等于60分)分为两组,代码可以为:

Map<Boolean, List<Student>> byPass = students.stream().collect(
partitioningBy(t->t.getScore()>=60));

按是否及格分组后,计算每个分组的平均分,代码可以为:

Map<Boolean, Double> avgScoreMap = students.stream().collect(
partitioningBy(t->t.getScore()>=60,
averagingDouble(Student::getScore)));

多级分组

groupingBy和partitioningBy都可以接受一个下游收集器,而下游收集器又可以是分组或分区。

比如,按年级对学生分组,分组后,再按照是否及格对学生进行分区,代码可以为:

Map<String, Map<Boolean, List<Student>>> multiGroup =
students.stream().collect(
groupingBy(Student::getGrade,
partitioningBy(t->t.getScore()>=60)));

小结

本节主要讨论了各种收集器,包括容器收集器、字符串收集器、分组和分区收集器等。

对于分组和分区,它们接受一个下游收集器,对同一个分组或分区内的元素进行进一步收集,下游收集器还可以是分组或分区,以构建多级分组,有一些收集器主要用于分组,比如counting, maxBy, minBy,  summarizingDouble等。

mapping和collectingAndThen也都接受一个下游收集器,mapping在把元素交给下游收集器之前先进行转换,而collectingAndThen对下游收集器的结果进行转换,组合利用它们,可以构造更为灵活强大的收集器。

至此,关于Java 8中的函数式数据处理Stream API,我们就介绍完了,Stream API提供了集合数据处理的常用函数,利用它们,可以简洁地实现大部分常见需求,大大减少代码,提高可读性。

对于并发编程,Java 8也提供了一个新的类CompletableFuture,类似于Stream API对集合数据的流水线式操作,使用CompletableFuture,可以实现对多个异步任务进行流水线式操作,它具体是什么呢?

(与其他章节一样,本节所有代码位于 https://github.com/swiftma/program-logic,位于包shuo.laoma.java8.c93下)

----------------

未完待续,查看最新文章,敬请关注微信公众号“老马说编程”(扫描下方二维码),从入门到高级,深入浅出,老马和你一起探索Java编程及计算机技术的本质。用心原创,保留所有版权。

Java编程的逻辑 (93) - 函数式数据处理 (下)的更多相关文章

  1. Java编程的逻辑 (92) - 函数式数据处理 (上)

    本系列文章经补充和完善,已修订整理成书<Java编程的逻辑>,由机械工业出版社华章分社出版,于2018年1月上市热销,读者好评如潮!各大网店和书店有售,欢迎购买,京东自营链接:http:/ ...

  2. Java编程的逻辑 (28) - 剖析包装类 (下)

    ​本系列文章经补充和完善,已修订整理成书<Java编程的逻辑>,由机械工业出版社华章分社出版,于2018年1月上市热销,读者好评如潮!各大网店和书店有售,欢迎购买,京东自营链接:http: ...

  3. 《Java编程的逻辑》 - 文章列表

    <计算机程序的思维逻辑>系列文章已整理成书<Java编程的逻辑>,由机械工业出版社出版,2018年1月上市,各大网店有售,敬请关注! 京东自营链接:https://item.j ...

  4. Java编程的逻辑 (90) - 正则表达式 (下 - 剖析常见表达式)

    本系列文章经补充和完善,已修订整理成书<Java编程的逻辑>,由机械工业出版社华章分社出版,于2018年1月上市热销,读者好评如潮!各大网店和书店有售,欢迎购买,京东自营链接:http:/ ...

  5. Java编程的逻辑 (25) - 异常 (下)

    ​本系列文章经补充和完善,已修订整理成书<Java编程的逻辑>,由机械工业出版社华章分社出版,于2018年1月上市热销,读者好评如潮!各大网店和书店有售,欢迎购买,京东自营链接:http: ...

  6. Java编程的逻辑 (37) - 泛型 (下) - 细节和局限性

    本系列文章经补充和完善,已修订整理成书<Java编程的逻辑>,由机械工业出版社华章分社出版,于2018年1月上市热销,读者好评如潮!各大网店和书店有售,欢迎购买,京东自营链接:http:/ ...

  7. Java编程的逻辑 (68) - 线程的基本协作机制 (下)

    ​本系列文章经补充和完善,已修订整理成书<Java编程的逻辑>,由机械工业出版社华章分社出版,于2018年1月上市热销,读者好评如潮!各大网店和书店有售,欢迎购买,京东自营链接:http: ...

  8. Java编程的逻辑 (7) - 如何从乱码中恢复 (下)?

    本系列文章经补充和完善,已修订整理成书<Java编程的逻辑>,由机械工业出版社华章分社出版,于2018年1月上市热销,读者好评如潮!各大网店和书店有售,欢迎购买,京东自营链接:http:/ ...

  9. Java编程的逻辑 (94) - 组合式异步编程

    ​本系列文章经补充和完善,已修订整理成书<Java编程的逻辑>,由机械工业出版社华章分社出版,于2018年1月上市热销,读者好评如潮!各大网店和书店有售,欢迎购买,京东自营链接:http: ...

随机推荐

  1. 前面的内容 也是要去掉白名单 和 8.8.8.8这种非问题IP的 高风险 么? (目前我们没有获取客户的中风险、低风险数据,可以处理掉高风险)

    前面的内容 也是要去掉白名单  和 8.8.8.8这种非问题IP的 高风险 么?   (目前我们没有获取客户的中风险.低风险数据,可以处理掉高风险) == 整体把关.不清楚细节,所以只能从整体决策.做 ...

  2. emitted value instead of an instance of error the scope attribute for scoped slots webpack babel polyfill

    api20180803.vue emitted value instead of an instance of error the scope attribute for scoped slots h ...

  3. 用canvas整个打飞机游戏

    声明:本文为原创文章,如需转载,请注明来源WAxes,谢谢! 之前在当耐特的DEMO里看到个打飞机的游戏,然后就把他的图片和音频扒了了下来....自己凭着玩的心情重新写了一个.仅供娱乐哈......我 ...

  4. BKDR Hash 函数实现

    K&R一书中提出的BKDR Hash算法,这里给出C函数实现,实际用的时候分布比较好而且实现简单.唯一不明白的就是为什么选择131这种模式的数字作为种子,隐隐有沃尔夫勒姆31号自动机的似曾相识 ...

  5. python实现23种设计模式

    本文源码寄方于github:https://github.com/w392807287/Design_pattern_of_python 参考文献: <大话设计模式>——吴强 <Py ...

  6. PHP爬取历史天气

    PHP爬取历史天气 PHP作为宇宙第一语言,爬虫也是非常方便,这里爬取的是从天气网获得中国城市历史天气统计结果. 程序架构 main.php <?php include_once(". ...

  7. 学习Struts--Chap05:值栈和OGNL

    1.值栈的介绍 1.1 值栈的介绍: 值栈是对应每一个请求对象的数据存储中心,struts2会给每一个请求对象创建一个值栈,我们大多数情况下不需要考虑值栈在哪里,里面有什么,只需要去获取自己需要的数据 ...

  8. 11-15 dom 动态创建节点

    1.生成节点的方法  document.createElement(“div”) 2.插入节点的方法   父元素.appendChild(新节点) 在父节点中的子节点后面插入新的节点 3.在指定的位置 ...

  9. JAVA自学笔记27

    JAVA自学笔记27 1.类的加载 1)当程序要使用某个类时,如果该类还未被加载到内存中,则系统会通过加载,连接,初始化三步来实现对这个类进行初始化. ①加载:就是指将class文件读入内存,并为之创 ...

  10. MUI学习04-开关按钮

    HTML代码如下: <div class="mui-switch"> <div class="mui-switch-handle">&l ...