How many integers can you find

Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6429    Accepted Submission(s): 1847

Problem Description
  Now
you get a number N, and a M-integers set, you should find out how many
integers which are small than N, that they can divided exactly by any
integers in the set. For example, N=12, and M-integer set is {2,3}, so
there is another set {2,3,4,6,8,9,10}, all the integers of the set can
be divided exactly by 2 or 3. As a result, you just output the number 7.
 
Input
  There
are a lot of cases. For each case, the first line contains two integers
N and M. The follow line contains the M integers, and all of them are
different from each other. 0<N<2^31,0<M<=10, and the M
integer are non-negative and won’t exceed 20.
 
Output
  For each case, output the number.
 
Sample Input
12 2
2 3
 
Sample Output
7
 
Author
wangye
思路:容斥原理;需要注意的是给你的数有可能包含0,只要把0换成比n-1大的数或者去掉就行;
还有求的是<n的,那么这时麻烦的地方就是要判断整除,所以转变下就是求(<=n-1)就行这时不需要判断是否整除。
 1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<stdlib.h>
5 #include<string.h>
6 #include<vector>
7 #include<queue>
8 #include<stack>
9 using namespace std;
10 long long gcd(long long n,long long m);
11 int ans[20];
12 int main(void)
13 {
14 int i,j,k;
15 int n,m;
16 while(scanf("%d %d",&n,&m)!=EOF)
17 {
18 int sum=0;
19 n=n-1;
20 for(i=0; i<m; i++)
21 {
22 scanf("%d",&ans[i]);
23 }
24 for(i=0; i<m; i++)
25 {
26 if(ans[i]==0)
27 ans[i]=n+1;
28 }
29 for(i=1; i<=(1<<m)-1; i++)
30 {
31 int cnt=0;
32 long long an=1;
33 int flag=0;
34 for(j=0; j<m; j++)
35 {
36 if(i&(1<<j))
37 {
38 cnt++;
39 long long cc=gcd(an,(long long)ans[j]);
40 an=an/cc*ans[j];
41 if(an>n)
42 {
43 flag=1;
44 break;
45 }
46 }
47 }
48 if(flag)
49 continue;
50 else
51 {
52 if(cnt%2)
53 sum+=n/(int)an;
54 else sum-=n/(int)an;
55 }
56 }
57 printf("%d\n",sum);
58 }
59 return 0;
60 }
61 long long gcd(long long n,long long m)
62 {
63 if(m==0)
64 return n;
65 else if(n%m==0)
66 return m;
67 else return gcd(m,n%m);
68 }

How many integers can you find(hdu1796)的更多相关文章

  1. hdu1796 How many integers can you find 容斥原理

    Now you get a number N, and a M-integers set, you should find out how many integers which are small ...

  2. Hdu1796 How many integers can you find 2017-06-27 15:54 25人阅读 评论(0) 收藏

    How many integers can you find Time Limit : 12000/5000ms (Java/Other)   Memory Limit : 65536/32768K ...

  3. HDU1796 How many integers can you find(容斥原理)

    题目给一个数字集合,问有多少个小于n的正整数能被集合里至少一个元素整除. 当然是容斥原理来计数了,计算1个元素组合的有几个减去2个元素组合的LCM有几个加上3个元素组合的LCM有几个.注意是LCM. ...

  4. hdu1796 How many integers can you find

    //设置m,Q小于n可以设置如何几号m随机多项整除 //利用已知的容斥原理 //ans = 数是由数的数目整除 - 数为整除的两个数的数的最小公倍数 + 由三个数字... #include<cs ...

  5. HDU1796 How many integers can you find【容斥定理】

    题目链接: http://acm.hdu.edu.cn/showproblem.php? pid=1796 题目大意: 给你一个整数N.和M个整数的集合{A1.A2.-.Am}.集合内元素为非负数(包 ...

  6. [LeetCode] Sum of Two Integers 两数之和

    Calculate the sum of two integers a and b, but you are not allowed to use the operator + and -. Exam ...

  7. [LeetCode] Divide Two Integers 两数相除

    Divide two integers without using multiplication, division and mod operator. If it is overflow, retu ...

  8. HDU 1796How many integers can you find(容斥原理)

    How many integers can you find Time Limit:5000MS     Memory Limit:32768KB     64bit IO Format:%I64d ...

  9. Leetcode Divide Two Integers

    Divide two integers without using multiplication, division and mod operator. 不用乘.除.求余操作,返回两整数相除的结果,结 ...

随机推荐

  1. python飞机大战

    '''新手刚学python,仿着老师敲的代码.1.敌方飞机只能左右徘徊(不会往下跑)并且不会发射子弹.2.正在研究怎么写计分.3.也参考了不少大佬的代码,但也仅仅只是参考了.加油!''' import ...

  2. Webpack 打包 Javascript 详细介绍

    本篇我们主要介绍Webpack打包 Javascript.当然,除了可以打包Javascript之外,webpack还可以打包html.但是这不是我们本篇的重点.我们可以参考 Webpack HTML ...

  3. 【leetcode】917. Reverse Only Letters(双指针)

    Given a string s, reverse the string according to the following rules: All the characters that are n ...

  4. 【Linux】【Services】【Disks】bftfs

    1. 简介 1.1 Btrfs(B-tree,Butter FS,Better FS) 1.2. 遵循GPL,由oracle在2007年研发,支持CoW 1.3. 主要为了替代早期的ext3/ext4 ...

  5. Ajax请求($.ajax()为例)中data属性传参数的形式

    首先定义一个form表单: <form id="login" > <input name="user" type="text&quo ...

  6. 使用Booststrap布局网页页面

    <!DOCTYPE html><html lang="zh-CN"><head> <meta charset="utf-8&qu ...

  7. Nginx编译添加新模块

    目录 一.简介与思路 一.简介与思路 当前适用于nginx已经在安装过了,如果没安装过,直接在编译时候添加模块即可. Nginx主要程序就是nginx这个二进制脚本,只要在编译一个nginx脚本替换掉 ...

  8. 09 - Vue3 UI Framework - Table 组件

    接下来做个自定义的表格组件,即 table 组件 返回阅读列表点击 这里 需求分析 开始之前我们先做一个简单的需求分析 基于原生 table 标签的强语义 允许用户自定义表头.表体 可选是否具有边框 ...

  9. Office365与Office2016差异汇总

    以下很多链接来自原来的博客,如果有哪篇"被色情"的,请留言联系我,谢谢! 2020-8-29更新 通用 图片透明度:http://blog.sina.com.cn/s/blog_5 ...

  10. WPF之交互触发器(CallMethodAction)学习

    需求背景: 当我们需要制作画板时,我们的VM需要记录我们的坐标并保存到Path的Data中,用我们普通的Command是无法办到的,这时我们就衍生出来了一个交互触发器CallMethodAction ...