Solution -「ARC 110F」Esoswap
\(\mathcal{Description}\)
Link.
给定 \(0\sim n-1\) 的排列 \(p_{0..n-1}\),每次操作给出 \(i\),交换 \(p_i\) 和 \(p_{(i+p_i)\bmod n}\)。构造一种使排列升序的操作序列。
\(n\le100\)。
\(\mathcal{Solution}\)
反正兔子就一个样例观察法,一个暴力伪解拍上去就 AC 了。(
先讲讲我的伪解,观察样例解释:
First, announce \(i=6\). We swap \(P_6(=5)\) and \(P_{(6+5)\bmod8}=P_3(=6)\), turning \(P\) into \(7,1,2,5,4,0,6,3\).
Then, announce \(i=0\). We swap \(P_0(=7)\) and \(P_{(0+7)\bmod8}=P_7(=3)\), turning \(P\) into \(3,1,2,5,4,0,6,7\).
Then, announce \(i=3\). We swap \(P_3(=5)\) and \(P_{(3+5)\bmod8}=P_0(=3)\), turning \(P\) into \(5,1,2,3,4,0,6,7\).
Finally, announce \(i=0\). We swap \(P_0(=5)\) and \(P_{(0+5)\bmod8}=P_5(=0)\), turning \(P\) into \(0,1,2,3,4,5,6,7\).
发现三次 \(p_i=5\),一次 \(p_i=7\)。考虑到样例的迷惑性,我们尝试让对 \(p_i=5\) 的操作挨在一起。交换第一步和第二步,发现操作序列仍合法。
接下来,我们强行解释该操作序列的内在逻辑:
- 希望 \(p_7=7\),反复操作 \(p_i=7\) 直到 \(p_7=7\);
- 希望 \(p_7=7\land p_6=6\),反复操作 \(p_i=6\)(样例中不需要操作),直到不满足 \(p_7=7\) 回到第一步,或满足 \(p_6=6\);
- 希望 \(p_5=5\land p_6=6\land p_7=7\),操作同上。
- ……
综上,交换策略为
选择不满足 \(p_i=i\) 的最大的 \(p_i\) 进行交换直到序列升序。
然后就 AC 了,复杂度不知道。(
正解是先操作使得 \(p=\{n-1,n-2,\cdots,0\}\) 然后逆序。操作方法考察从后往前的每个 \(i\),不断操作 \(i\) 直至 \(p_i=n-i-1\),可证至多操作 \(\mathcal O(n)\) 次,总复杂度 \(\mathcal O(n^2)\)。
\(\mathcal{Code}\)
伪解:
/* Clearink */
#include <cstdio>
#include <vector>
#define rep( i, l, r ) for ( int i = l, rpbound##i = r; i <= rpbound##i; ++i )
#define per( i, r, l ) for ( int i = r, rpbound##i = l; i >= rpbound##i; --i )
const int MAXN = 100;
int n, p[MAXN + 5];
std::vector<int> ans;
inline void iswp ( int& a, int& b ) { a ^= b ^= a ^= b; }
int main () {
scanf ( "%d", &n );
rep ( i, 0, n - 1 ) scanf ( "%d", &p[i] );
while ( true ) {
int irr = -1;
rep ( i, 0, n - 1 ) if ( i ^ p[i] && ( !~irr || p[i] > p[irr] ) ) irr = i;
if ( !~irr ) break;
ans.push_back ( irr );
iswp ( p[irr], p[( irr + p[irr] ) % n] );
}
printf ( "%d\n", ( int ) ans.size () );
for ( int i: ans ) printf ( "%d\n", i );
return 0;
}
正解:
/* Clearink */
#include <cstdio>
#include <vector>
#define rep( i, l, r ) for ( int i = l, rpbound##i = r; i <= rpbound##i; ++i )
#define per( i, r, l ) for ( int i = r, rpbound##i = l; i >= rpbound##i; --i )
const int MAXN = 100;
int n, p[MAXN + 5];
std::vector<int> ans;
inline void iswp ( int& a, int& b ) { a ^= b ^= a ^= b; }
inline void oper ( const int i ) {
ans.push_back ( i ), iswp ( p[i], p[( i + p[i] ) % n] );
}
int main () {
scanf ( "%d", &n );
rep ( i, 0, n - 1 ) scanf ( "%d", &p[i] );
per ( i, n - 1, 1 ) for ( ; p[i] != n - i - 1; oper ( i ) );
per ( i, n - 2, 0 ) {
rep ( j, i + 1, n - 2 ) oper ( j );
oper ( i ), oper ( i );
}
printf ( "%d\n", ( int ) ans.size () );
for ( int i: ans ) printf ( "%d\n", i );
return 0;
}
Solution -「ARC 110F」Esoswap的更多相关文章
- Solution -「ARC 104E」Random LIS
\(\mathcal{Description}\) Link. 给定整数序列 \(\{a_n\}\),对于整数序列 \(\{b_n\}\),\(b_i\) 在 \([1,a_i]\) 中等概率 ...
- Solution -「ARC 101D」「AT4353」Robots and Exits
\(\mathcal{Description}\) Link. 有 \(n\) 个小球,坐标为 \(x_{1..n}\):还有 \(m\) 个洞,坐标为 \(y_{1..m}\),保证上述坐标 ...
- Solution -「ARC 110D」Binomial Coefficient is Fun
\(\mathcal{Description}\) Link. 给定非负整数序列 \(\{a_n\}\),设 \(\{b_n\}\) 是一个非负整数序列且 \(\sum_{i=1}^nb_i\ ...
- Solution -「ARC 124E」Pass to Next
\(\mathcal{Description}\) Link. 有 \(n\) 个人站成一个环,初始时第 \(i\) 个人手里有 \(a_i\) 个球.第 \(i\) 个人可以将自己手中任意数 ...
- Solution -「ARC 126E」Infinite Operations
\(\mathcal{Description}\) Link. 给定序列 \(\{a_n\}\),定义一次操作为: 选择 \(a_i<a_j\),以及一个 \(x\in\mathbb R ...
- Solution -「ARC 126F」Affine Sort
\(\mathcal{Description}\) Link. 给定 \(\{x_n\}\),令 \[f(k)=\left|\{(a,b,c)\mid a,b\in[0,c),c\in[1,k ...
- Solution -「ARC 125F」Tree Degree Subset Sum
\(\mathcal{Description}\) Link. 给定含有 \(n\) 个结点的树,求非负整数对 \((x,y)\) 的数量,满足存在 \(\exist S\subseteq V ...
- Solution -「ARC 125E」Snack
\(\mathcal{Description}\) Link. 把 \(n\) 种零食分给 \(m\) 个人,第 \(i\) 种零食有 \(a_i\) 个:第 \(i\) 个人得到同种零食数量 ...
- Solution -「ARC 058C」「AT 1975」Iroha and Haiku
\(\mathcal{Description}\) Link. 称一个正整数序列为"俳(pái)句",当且仅当序列中存在连续一段和为 \(x\),紧接着连续一段和为 \(y ...
随机推荐
- 35个JAVA性能优化总结
原文链接:http://mp.weixin.qq.com/s/J614jGM_oMrzdeS_ivmhvA 代码优化,一个很重要的课题.可能有些人觉得没用,一些细小的地方有什么好修改的,改与不改对 ...
- Static 静态+this
(一):静态 1.Static修饰的都是静态的,都是类相关的,不需要new对象,直接采用类名.的方式访问 2.当一个属性是类级别的,所有对象的这个属性都是一样的,直接定义为静态 类=属性+方法 属性描 ...
- 万级K8s集群背后 etcd 稳定性及性能优化实践
1背景与挑战随着腾讯自研上云及公有云用户的迅速增长,一方面,腾讯云容器服务TKE服务数量和核数大幅增长, 另一方面我们提供的容器服务类型(TKE托管及独立集群.EKS弹性集群.edge边缘计算集群.m ...
- Ubuntu下使用VS Code创建Spring Boot工程
目的 我们将在Ubuntu桌面系统下,使用VS Code(Visual Studio Code)编辑器从零开始创建一个Spring Boot工程,并实现一个简单的RESTful风格接口.使用这套流程的 ...
- 聊聊dubbo协议2
本文已收录 https://github.com/lkxiaolou/lkxiaolou 欢迎star. 在<聊聊dubbo协议>中介绍了attachments在consumer和prov ...
- [ARM汇编]常用ARM汇编指令
- 一文读懂HarmonyOS服务卡片怎么换肤
作者:zhenyu,华为软件开发工程师 关注HarmonyOS的小伙伴肯定对服务卡片已经很熟悉了.服务卡片(也简称为"卡片")是FA(FeatureAbility,元服务)的一种界 ...
- golang中json格式化自定义日期格式
go 的time.Time,在json序列化是默认 2006-01-02T15:04:05Z07:00 的格式,十分不便, encoding/json包在序列化和反序列化的时候分别调用encode.g ...
- 常见Web服务器
常见Web服务器
- linux远程搭建yum网络仓库《全面解析》
目录 一:远程版本需求 1.yum简介 2.yum安装解析 二:yum安装的生命周期 三:yum私有仓库作用与必要性 四:搭建yum私有仓库 本地版本 1.下载必须的软件包 2.创建软件仓库(就是创建 ...