\(\mathcal{Description}\)

  Link.

  数轴从 \(1\sim 2n\) 的整点上有 \(n\) 个闭区间。你只知道每个区间的部分信息(可能不知道左或右端点,或者都不知道),问是否存在满足已知信息的 \(n\) 个区间,满足:

  • 每个整点是恰好一个区间的端点。
  • 所有包含同一个整点的区间长度相等。

  输入信息可能不合法

  \(n\le100\)。

\(\mathcal{Solution}\)

  老细节题了。(

  考虑数轴上连续的一段区间 \([l,r]\),记 \(L=r-l+1\),若该区间内能够满足条件,则显然有:

  • \(2|L\)。
  • \([i,i+\frac{L}2]\) 可以存在于区间集合中。

  记 \(f(i)\) 表示 \(1\sim i\) 能否合法,\(\mathcal O(n^3)\) 暴力转移即可。

  但这个不是难点,if-else 才是难点 qwq。

  • 输入可能多点重合,判否。
  • 若有区间 \([l,?]\) 和 \([?,r]\),注意不能让 \(l\) 和 \(r\) 组成 \([l,r]\)。

  对于第二点,一组 CF 上的 hack 数据为:

2
1 -1
-1 3 answer: No

  多堆几个 if-else 就 A 啦!(

\(\mathcal{Code}\)

/* Clearink */

#include <cstdio>
#include <cstdlib>
#include <assert.h> const int MAXN = 200;
int n, match[MAXN + 5];
bool f[MAXN + 5], vis[MAXN + 5]; inline bool check ( const int l, const int r ) {
int stp = r - l + 1 >> 1; // i -> i + stp.
for ( int i = l, j; ( j = i + stp ) <= r; ++ i ) {
bool acci = 1 <= match[i] && match[i] <= n << 1;
bool accj = 1 <= match[j] && match[j] <= n << 1;
if ( match[i] == -1 || ( acci && match[i] ^ j )
|| match[j] == ( n << 1 | 1 ) || ( accj && match[j] ^ i )
|| ( !acci && !accj && match[i] && match[j] ) ) {
return false;
}
}
return true;
} int main () {
scanf ( "%d", &n );
for ( int i = 1, a, b; i <= n; ++ i ) {
scanf ( "%d %d", &a, &b );
if ( ~a && ~b && a >= b ) return puts ( "No" ), 0;
if ( ~a && ~b ) match[a] = b, match[b] = a;
else if ( ~a ) match[a] = n << 1 | 1;
else if ( ~b ) match[b] = -1;
if ( ~a ) {
if ( vis[a] ) return puts ( "No" ), 0;
vis[a] = true;
}
if ( ~b ) {
if ( vis[b] ) return puts ( "No" ), 0;
vis[b] = true;
}
}
f[0] = true;
for ( int i = 2; i <= n << 1; i += 2 ) {
for ( int j = 0; j < i && !f[i]; j += 2 ) {
f[i] = f[j] && check ( j + 1, i );
}
}
puts ( f[n << 1] ? "Yes" : "No" );
return 0;
}

Solution -「ARC 104C」Fair Elevator的更多相关文章

  1. Solution -「ARC 104E」Random LIS

    \(\mathcal{Description}\)   Link.   给定整数序列 \(\{a_n\}\),对于整数序列 \(\{b_n\}\),\(b_i\) 在 \([1,a_i]\) 中等概率 ...

  2. Solution -「ARC 101D」「AT4353」Robots and Exits

    \(\mathcal{Description}\)   Link.   有 \(n\) 个小球,坐标为 \(x_{1..n}\):还有 \(m\) 个洞,坐标为 \(y_{1..m}\),保证上述坐标 ...

  3. Solution -「ARC 110D」Binomial Coefficient is Fun

    \(\mathcal{Description}\)   Link.   给定非负整数序列 \(\{a_n\}\),设 \(\{b_n\}\) 是一个非负整数序列且 \(\sum_{i=1}^nb_i\ ...

  4. Solution -「ARC 124E」Pass to Next

    \(\mathcal{Description}\)   Link.   有 \(n\) 个人站成一个环,初始时第 \(i\) 个人手里有 \(a_i\) 个球.第 \(i\) 个人可以将自己手中任意数 ...

  5. Solution -「ARC 126E」Infinite Operations

    \(\mathcal{Description}\)   Link.   给定序列 \(\{a_n\}\),定义一次操作为: 选择 \(a_i<a_j\),以及一个 \(x\in\mathbb R ...

  6. Solution -「ARC 126F」Affine Sort

    \(\mathcal{Description}\)   Link.   给定 \(\{x_n\}\),令 \[f(k)=\left|\{(a,b,c)\mid a,b\in[0,c),c\in[1,k ...

  7. Solution -「ARC 125F」Tree Degree Subset Sum

    \(\mathcal{Description}\)   Link.   给定含有 \(n\) 个结点的树,求非负整数对 \((x,y)\) 的数量,满足存在 \(\exist S\subseteq V ...

  8. Solution -「ARC 125E」Snack

    \(\mathcal{Description}\)   Link.   把 \(n\) 种零食分给 \(m\) 个人,第 \(i\) 种零食有 \(a_i\) 个:第 \(i\) 个人得到同种零食数量 ...

  9. Solution -「ARC 058C」「AT 1975」Iroha and Haiku

    \(\mathcal{Description}\)   Link.   称一个正整数序列为"俳(pái)句",当且仅当序列中存在连续一段和为 \(x\),紧接着连续一段和为 \(y ...

随机推荐

  1. MySQL 表字段唯一性约束设置方法unique

    1. 建表时加上唯一性约束 CREATE TABLE `t_user` ( `Id` int(11) NOT NULL AUTO_INCREMENT, -- 自增 `username` varchar ...

  2. redis中文乱码问题

    1.可以直接打开dos指令框输入指令进去redis数据库,因为在安装的时候就已经勾选了配置默认的环境变量. 2.可以输入ip进去,redis-cli.exe -h 192.168.32.8 -p 63 ...

  3. dart系列之:手写Library,Library编写最佳实践

    目录 简介 使用part和part of src中的文件 package中的lib文件 总结 简介 Library是dart用来组织代码的一种非常有用的方式,通过定义不同的Library,可以将非常有 ...

  4. Redhat 如何使用yum 源(转)

    1.需要把Redhat注册的信息给解决掉 This system is not registered with an entitlement server. You can use subscript ...

  5. [Altium Designer 学习]怎样添加3D模型

    对于为给PCB添加3D模型,很多人觉得这是个绣花针的活,中看不中用.在我看来这也未必,特别是常用的3D模型能在网上下载的今天,只需要几个简单的操作,就能使你的PCB更加赏心悦目.除此之外,3D模型还有 ...

  6. 【源码阅读】vm-insert与vm-storage之间的通讯

    先说结论 vm-insert与vm-storage之间采用极其简单的通讯协议 对于简单的场景,越简单性能越高 vm-insert连接到vm-storage后,先发送字符串vminsert.02,vm- ...

  7. 【解决了一个小问题】golang的go.mod中出现版本错误

    代码中的这一句使用prometheus2.28.0版本的代码: import "github.com/prometheus/prometheus/prompb" 我把require ...

  8. manjaro20安装teamviewer出现sudo teamviewer –daemon start无响应

    问题 https://www.randomhacks.co.uk/the-teamviewer-daemon-is-not-running-please-start-the-daemon-ubuntu ...

  9. vue文档1-VSCode介绍

    开发工具VSCode: Vue的开发工具用的是VSCode(Visual Studio Code),这款开发工具是微软官方出品,开源,免费,并且功能相当强大,使用者很多,插件相当丰富,是Vue开发的不 ...

  10. golang中的tcp编程

    1. tcp server package main import ( "bufio" "fmt" "net" ) func main() ...