考虑purfer序列,若生成树的pufer序列为$p_{i}$,则答案为$(\prod_{i=1}^{n}a_{i})\sum_{p}\prod_{i=1}^{n}\frac{(a_{i}-1)!}{(a_{i}-1-s_{i})!}$(其中$s_{i}$为$p$中点$i$出现的次数,即度数减1)

(以下令$a_{i}$减1)观察到式子只与$s_{i}$有关,对于相同的$s_{i}$对应$p_{i}$有$\frac{(n-2)!}{\prod_{i=1}^{n}s_{i}!}$种,令$C=(n-2)!\prod_{i=1}^{n}a_{i}$,代入即$ans=C\sum_{\sum_{i=1}^{n}s_{i}=n-2}\prod_{i=1}^{n}\frac{a_{i}!}{s_{i}!(a_{i}-s_{i})!}$

令$f(x)=\sum_{k=0}^{n-2}(\sum_{\sum_{i=1}^{n}s_{i}=k}\frac{a_{i}!}{s_{i}!(a_{i}-s_{i})!})x^{k}=\sum_{s_{i}}\prod_{i=1}^{n}\frac{a_{i}!}{s_{i}!(a_{i}-s_{i})!}\cdot x^{s_{i}}$,答案即$f(x)[x^{n-2}]$

不妨先枚举$s_{1},s_{2},..$,再提取出对应位置上的式子作为公因式,之后由于各位上完全独立,再将结果乘起来就是原式,即$f(x)=\prod_{i=1}^{n}\sum_{s_{i}=0}^{a_{i}}\frac{a_{i}!}{s_{i}!(a_{i}-s_{i})!}\cdot x^{s_{i}}=(1+x)^{\sum_{i=1}^{n}a_{i}}$

因此$f(x)[x^{n-2}]=c(\sum_{i=1}^{n}a_{i},n-2)$(注意这里的$a_{i}$减了1),发现$(n-2)!$已经被抵消掉,因此直接枚举$\sum_{i=1}^{n}a_{i}$到$\sum_{i=1}^{n}a_{i}-(n-2)+1$即可

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define mod 998244353
4 int n,x,s,ans;
5 int main(){
6 scanf("%d",&n);
7 ans=1;
8 for(int i=1;i<=n;i++){
9 scanf("%d",&x);
10 ans=1LL*ans*x%mod;
11 s=(s+x-1)%mod;
12 }
13 for(int i=0;i<n-2;i++)ans=1LL*ans*(s-i+mod)%mod;
14 printf("%d",ans);
15 }

[atAGC106F]Figures的更多相关文章

  1. LaTeX插入图表方法 Lists of tables and figures

    Lists of tables and figures A list of the tables and figures keep the information organized and prov ...

  2. Deployed component GUIs and figures have different look and feel than MATLAB desktop

    原文:http://www.mathworks.com/support/bugreports/1293244 Description Deployed GUIs and figures look an ...

  3. LaTeX:Figures, Tables, and Equations 插入图表和公式

    Figures To insert a figure in a LaTeX document, you write lines like this: \begin{figure} \centering ...

  4. 图片 响应式图像 Images Figures

    响应式图像 Bootstrap中的图像响应 .img-fluid <img class="img-fluid" src="http://lorempixel.com ...

  5. Figures Inscribed in Curves (曲线上的图形)

    Figures Inscribed in Curves\text{Figures Inscribed in Curves}Figures Inscribed in Curves A short tou ...

  6. Inscribed Figures(思维)

    The math faculty of Berland State University has suffered the sudden drop in the math skills of enro ...

  7. Adding supplementary tables and figures in LaTeX【转】

    \renewcommand{\thetable}{S\arabic{table}} \renewcommand{\thefigure}{S\arabic{figure}} 这样就以Table S1, ...

  8. Wannafly Winter Camp 2020 Day 5J Xor on Figures - 线性基,bitset

    有一个\(2^k\cdot 2^k\) 的全零矩阵 \(M\),给出 \(2^k\cdot 2^k\) 的 \(01\) 矩阵 \(F\),现在可以将 \(F\) 的左上角置于 \(M\) 的任一位置 ...

  9. [cf1270I]Xor on Figures

    考虑一个构造:令初始$2^{k}\times 2^{k}$的矩阵为$A$(下标从0开始),再构造一个矩阵$T$,满足仅有$T_{x_{i},y_{i}}=1$(其余位置都为0),定义矩阵卷积$\oti ...

随机推荐

  1. 高级爬虫面试题测试题 v1.3

    Python Web高级爬虫工程师测试题 (请本文件发送到: SpiderTestQuestion@163.com 并附带简历) 1. 用yield写一个斐波那契数列的生成器函数. 2. 放一段scr ...

  2. Java课堂测试1第三阶段

    package sizeyunsuan;//import java.util.Scanner;//import java.util.Random;import java.util.*; public ...

  3. MySQL灵魂拷问:36题带你面试通关!

    大家好,我是大彬~ 今天给大家分享MySQL常考的面试题,看看你们能答对多少. 本期MySQL面试题的目录如下: 事务的四大特性? 事务隔离级别有哪些? 索引 什么是索引? 索引的优缺点? 索引的作用 ...

  4. Java(32)File类的介绍

    作者:季沐测试笔记 原文地址:https://www.cnblogs.com/testero/p/15228444.html 博客主页:https://www.cnblogs.com/testero ...

  5. netty系列之:让TLS支持http2

    目录 简介 TLS的扩展协议NPN和ALPN SslProvider ApplicationProtocolConfig 构建SslContext ProtocolNegotiationHandler ...

  6. 虚拟机研究系列-「GC本质底层机制」SafePoint的深入分析和底层原理探究指南

    SafePoint前提介绍 在高度优化的现代JVM里,Safepoint有几种不同的用法.GC safepoint是最常见.大家听说得最多的,但还有deoptimization safepoint也很 ...

  7. TStor-OneCOS ,主打专一海量对象场景

    ​谁能与你厮守终身 生活在21世纪,最常见的事莫过于更新换代了,找一款能长久适用的产品,是很多人都希望拥有的,特别是针对于云服务产品,而对象·混合云存储新增 TStor-OneCOS 就是这样一款可以 ...

  8. 手把手教你学Dapr - 2. 必须知道的概念

    Sidecar 边车 Dapr API提供Http和gRPC两种通讯方式. 运行方式则可以是容器也可以是进程(Windows开发推荐使用Self Hosted,后续会解释). 这样的好处是与运行环境无 ...

  9. time_formatter攻防世界学习

    time_formatter 前言:这题说实话分析量蛮大的,首先是程序内壁比较绕,而且调用了之前许多没有见到的函数---如snprintf_che,以及strsup(好像打错了),getegid(), ...

  10. 数位dp & 热身训练7

    数位dp 数位dp是一种计数用的dp,一般就是要统计一段区间$[L,R]$内,满足一定条件的数的个数,或者各个数位的个数. 数位dp使得暴力枚举变为满足一定状态的记忆化,更加优秀. 数位dp常常会考虑 ...