BZOJ 1857 传送带 (三分套三分)
在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段。两条传送带分别为线段AB和线段CD。lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R。现在lxhgww想从A点走到D点,他想知道最少需要走多长时间
Input
输入数据第一行是4个整数,表示A和B的坐标,分别为Ax,Ay,Bx,By 第二行是4个整数,表示C和D的坐标,分别为Cx,Cy,Dx,Dy 第三行是3个整数,分别是P,Q,R
Output
输出数据为一行,表示lxhgww从A点走到D点的最短时间,保留到小数点后2位。
显然是先从AB的某点E出发,然后经过平面到达CD的某点F,然后从F到达D。
我们假设已经确定了E,然后我们确定CD的F时,我们通过直觉感知到随着点F从C移动到D
时间关于位移的函数图像是一个先减少后增加的图形。
我们再来确定E,通过直觉,
时间关于位移的函数图像依然是一个先减少后增加的图形。
所以我们先三分E,再三分F,
我们用三分套三分解决了这个问题。
# include <stdio.h>
# include <string.h>
# include <stdlib.h>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <math.h>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define MAXN
# define eps 1e-
# define MAXM
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
typedef unsigned long long ULL;
int _MAX(int a, int b){return a>b?a:b;}
int _MIN(int a, int b){return a>b?b:a;}
int Scan() {
int res=, flag=;
char ch;
if((ch=getchar())=='-') flag=;
else if(ch>=''&&ch<='') res=ch-'';
while((ch=getchar())>=''&&ch<='') res=res*+(ch-'');
return flag?-res:res;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
} double ax, ay, bx, by, cx, cy, dx, dy, p, q, r; double dis(double x1, double y1, double x2, double y2)
{
return sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1));
}
double cal(double x, double y)
{
double ans=dis(ax,ay,x,y)/p;
double lx=cx, ly=cy, rx=dx, ry=dy;
while (dis(lx,ly,rx,ry)>eps) {
double P1x=(lx+lx+rx)/, P1y=(ly+ly+ry)/, P2x=(lx+rx+rx)/, P2y=(ly+ry+ry)/;
double t1=dis(P1x,P1y,dx,dy)/q+dis(x,y,P1x,P1y)/r, t2=dis(P2x,P2y,dx,dy)/q+dis(x,y,P2x,P2y)/r;
if (t1<=t2) rx=P2x, ry=P2y;
else lx=P1x, ly=P1y;
}
return ans+dis(lx,ly,dx,dy)/q+dis(x,y,lx,ly)/r;
}
int main ()
{
scanf("%lf%lf%lf%lf%lf%lf%lf%lf%lf%lf%lf",&ax,&ay,&bx,&by,&cx,&cy,&dx,&dy,&p,&q,&r);
double lx=ax, ly=ay, rx=bx, ry=by;
while (dis(lx,ly,rx,ry)>eps) {
double P1x=(lx+lx+rx)/, P1y=(ly+ly+ry)/, P2x=(lx+rx+rx)/, P2y=(ly+ry+ry)/;
double t1=cal(P1x,P1y), t2=cal(P2x,P2y);
if (t1<=t2) rx=P2x, ry=P2y;
else lx=P1x, ly=P1y;
}
printf("%.2lf\n",cal(lx,ly));
return ;
}
BZOJ 1857 传送带 (三分套三分)的更多相关文章
- Bzoj 1857: [Scoi2010]传送带(三分套三分)
1857: [Scoi2010]传送带 Time Limit: 1 Sec Memory Limit: 64 MB Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段 ...
- 【BZOJ-1857】传送带 三分套三分
1857: [Scoi2010]传送带 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 1077 Solved: 575[Submit][Status][ ...
- 2018.06.30 BZOJ1857: [Scoi2010]传送带(三分套三分)
1857: [Scoi2010]传送带 Time Limit: 1 Sec Memory Limit: 64 MB Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段 ...
- 【BZOJ1857】[Scoi2010]传送带 三分套三分
[BZOJ1857][Scoi2010]传送带 Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度 ...
- 【BZOJ1857】传送带(分治经典:三分套三分)
点此看题面 大致题意: 一个二维平面上有两条传送带\(AB\)和\(CD\),\(AB\)传送带的移动速度为\(P\),\(CD\)传送带的移动速度为\(Q\),步行速度为\(R\),问你从\(A\) ...
- loj10017. 「一本通 1.2 练习 4」传送带(三分套三分)
题目描述 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R.现在lxh ...
- #10017 传送带(SCOI 2010)(三分套三分)
[题目描述] 在一个 2 维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段 AB 和线段 CD.lxhgww 在 AB上的移动速度为 P ,在 CD 上的移动速度为 Q,在平 ...
- bzoj1857: [Scoi2010]传送带--三分套三分
三分套三分模板 貌似只要是单峰函数就可以用三分求解 #include<stdio.h> #include<string.h> #include<algorithm> ...
- [BZOJ 1857] 传送带
Link: BZOJ 1857 传送门 Solution: 首先中间的两个拐点$C,D$肯定都在传送带$A,B$上 接下来感性发现固定点A/C,另一个点C/D时间随位置的变化为单峰函数 这样就是三分套 ...
随机推荐
- 自己动手写ORM的感受
之前看到奋斗前辈和时不我待前辈的自己动手写ORM系列博客,感觉讲解的通俗易懂,清晰透彻.作为一个菜鸟,闲来也想着自己写一个ORM,一来加深自己对 ORM的理解,以求对EF,NHibernate等ROM ...
- javascript DOM操作
看到一个好的dom树.
- SharePoint项目实践中如何实现非打破继承看上去很美的权限控制
首先对于比较机密的数据,打破继承还是必须要的. 但是对于一些普通申请单据,虽然客户也希望用户不要看到其他人的申请单据,但是我还是不推荐打破继承,应为打破继承一方面会造成网站的权限管理特别的凌乱,另一方 ...
- SharePoint 2013 User Profile Services之跨场设置
这段时间有个客户需要在不同SharePoint场中使用网站.文档和用户关注功能.但实际使用中发现默认的关注功能不能跨场使用,这也引出了我接下来的博客,我将在博客中详细描述整个过程. 因为“关注”功能是 ...
- Android工程师常见面试题集
本文汇总了朋友同事在面试过程中被经常问道的一些问题,讲解不详细,有需要特别了解的可以留言告诉我.持续更新中…… 1.接口回调机制 ①定义一个接口,定义接口中的方法: ②在数据产生的地方持有接口,并提供 ...
- iOS之UICollectionView详解
UICollectionView是一种类似于UITableView但又比UITableView功能更强大.更灵活的视图,这是源于它将UICollectionView对cell的布局交给了UIColle ...
- IT人创业之融资方式 - 创业与投资系列文章
对于想要创业的IT人,最基本的就是需要资金和团队.笔者在经历了自己制定的职业道路之后(见文:IT从业者的职业道路(从程序员到部门经理) - 项目管理系列文章),进行过投资(见文:IT人经济思维之投资 ...
- ant+findbugs 扫描代码生成报告
1. 下载安装ant.findbugs 下载ant.findbugs最新压缩包解压到本地磁盘合适位置,比如: D:\Program Files\apache-ant-1.9.7 D:\Program ...
- Jenkins 2.0 要来了
Jenkins 在2016/02/29日发布了2.0 alpha版本,https://jenkins-ci.org/2.0/ , 改进界面,向前兼容,增加新功能: 1.初始化时可以选择推荐插件或自定义 ...
- 全新的membership框架Asp.net Identity(2)——绕不过的Claims
本来想直接就开始介绍Identity的部分,奈何自己挖坑太深,高举高打的方法不行.只能自己默默下载了Katana的源代码研究了好一段时间.发现要想能够理解好用好Identity, Claims是一个绕 ...