题目链接:

POJ:

id=3831" target="_blank">http://poj.org/problem?id=3831

HDU:http://acm.hdu.edu.cn/showproblem.php?pid=3264

Description

The city of M is a famous shopping city and its open-air shopping malls are extremely attractive. During the tourist seasons, thousands of people crowded into these shopping malls and enjoy the vary-different shopping. 



Unfortunately, the climate has changed little by little and now rainy days seriously affected the operation of open-air shopping malls -- it's obvious that nobody will have a good mood when shopping in the rain. In order to change this situation, the manager
of these open-air shopping malls would like to build a giant umbrella to solve this problem. 



These shopping malls can be considered as different circles. It is guaranteed that these circles will not intersect with each other and no circles will be contained in another one. The giant umbrella is also a circle. Due to some technical reasons, the center
of the umbrella must coincide with the center of a shopping mall. Furthermore, a fine survey shows that for any mall, covering half of its area is enough for people to seek shelter from the rain, so the task is to decide the minimum radius of the giant umbrella
so that for every shopping mall, the umbrella can cover at least half area of the mall.

Input

The input consists of multiple test cases. 



The first line of the input contains one integer T (1 <= T <= 10), which is the number of test cases. For each test case, there is one integer N (1 <= N <= 20) in the first line, representing the number of shopping malls. 



The following N lines each contain three integers X,Y,R, representing that the mall has a shape of a circle with radius R and its center is positioned at (X, Y). X and Y are in the range of [-10000,10000] and R is a positive integer less than 2000.

Output

For each test case, output one line contains a real number rounded to 4 decimal places, representing the minimum radius of the giant umbrella that meets the demands.

Sample Input

1
2
0 0 1
2 0 1

Sample Output

2.0822

Source

题意: 

给出一些圆,选择当中一个圆的圆心为圆心。然后画一个大圆。要求大圆最少覆盖每一个圆的一半面积。求最小面积。

代码例如以下:

#include <cstdio>
#include <cstring>
#include <cmath>
#include <iostream>
#include <algorithm> using namespace std;
const double eps = 1e-8;
const double PI = acos(-1.0); int sgn(double x)
{
if(fabs(x) < eps) return 0;
if(x < 0) return - 1;
else return 1;
}
struct Point
{
double x, y, r;
Point() {}
Point(double _x, double _y)
{
x = _x;
y = _y;
}
Point operator -( const Point &b) const
{
return Point(x - b. x, y - b. y);
}
//叉积
double operator ^ (const Point &b) const
{
return x*b. y - y*b. x;
}
//点积
double operator * (const Point &b) const
{
return x*b. x + y*b. y;
}
//绕原点旋转角度B(弧度值),后x,y的变化
void transXY(double B)
{
double tx = x,ty = y;
x = tx* cos(B) - ty*sin(B);
y = tx* sin(B) + ty*cos(B);
}
};
Point p[47]; //*两点间距离
double dist( Point a, Point b)
{
return sqrt((a-b)*(a- b));
}
//两个圆的公共部分面积
double Area_of_overlap(Point c1, double r1, Point c2, double r2)
{
double d = dist(c1,c2);
if(r1 + r2 < d + eps) return 0;
if(d < fabs(r1 - r2) + eps)
{
double r = min(r1,r2);
return PI*r*r;
}
double x = (d*d + r1*r1 - r2*r2)/(2*d);
double t1 = acos(x / r1);
double t2 = acos((d - x)/r2);
return r1*r1*t1 + r2*r2*t2 - d*r1*sin(t1);
} int main()
{
double x1, y1, r1, x2, y2, r2;
int t;
int n;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(int i = 0; i < n; i++)
{
scanf("%lf %lf %lf",&p[i].x,&p[i].y,&p[i].r);
}
double ans = 999999;
double l, r, mid;
for(int i = 0; i < n; i++) //枚举圆心
{
l = 0;
r = 35000.0;//二分
while(r-l > eps)//能找到
{
mid = (l+r)/2.0;
int flag = 0;
for(int j = 0; j < n; j++) // 每一个点
{
if(Area_of_overlap(p[i],mid,p[j],p[j].r)<p[j].r*p[j].r*PI/2.0)
{
flag = 1;//太小
break;
}
}
if(flag)
l = mid;
else
r = mid;
}
if(l < ans)
ans = l;
}
printf("%.4lf\n",ans);
}
return 0;
}

POJ 3831 &amp; HDU 3264 Open-air shopping malls(几何)的更多相关文章

  1. HDU 3264/POJ 3831 Open-air shopping malls(计算几何+二分)(2009 Asia Ningbo Regional)

    Description The city of M is a famous shopping city and its open-air shopping malls are extremely at ...

  2. hdu 3264 09 宁波 现场 E - Open-air shopping malls 计算几何 二分 圆相交面积 难度:1

    Description The city of M is a famous shopping city and its open-air shopping malls are extremely at ...

  3. hdu 3264 Open-air shopping malls(圆相交面积+二分)

    Open-air shopping malls Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/ ...

  4. HDU 3264 区间内的最大最小之差

    题目链接:http://poj.org/problem?id=3264 题目大意:在给定一堆牛的数量以及其高度的时候,每次给定一段区间,求这个区间内最高的牛和最矮的牛的高度之差为多少. 可以直接利用R ...

  5. hdu 3264(枚举+二分+圆的公共面积)

    Open-air shopping malls Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/ ...

  6. hdu 3264 圆的交+二分

    Open-air shopping malls Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/ ...

  7. Open-air shopping malls(二分半径,两元交面积)

    http://acm.hdu.edu.cn/showproblem.php?pid=3264 Open-air shopping malls Time Limit: 2000/1000 MS (Jav ...

  8. UVALive - 6572 Shopping Malls floyd

    题目链接: http://acm.hust.edu.cn/vjudge/problem/48416 Shopping Malls Time Limit: 3000MS 问题描述 We want to ...

  9. HDU 3264 Open-air shopping malls (计算几何-圆相交面积)

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=3264 题意:给你n个圆,坐标和半径,然后要在这n个圆的圆心画一个大圆,大圆与这n个圆相交的面积必须大于等 ...

随机推荐

  1. elasticsearch 索引 类型 id

    zjtest7-frontend:/usr/local/logstash-2.3.4/config# cat logstash_indexer01.conf  input {         redi ...

  2. Linux下对字符串进行MD5加密

    Linux下对字符串进行MD5加密 比如要用MD5在linux下加密字符串“test",可以使用命令:$ echo -n test|md5sum098f6bcd4621d373cade4e8 ...

  3. 从缓冲上看阻塞与非阻塞socket在发送接收上的区别

    最近在网络上看到一些帖子以及回复,同时又搜索了一些网络上关于阻塞非阻塞区别的描述,发现很多人在描述两者的发送接收时操作返回以及缓冲区处理的区别时有不同程度的误解.所以我想写一篇文章来纠正错误,并作为记 ...

  4. why constrained regression and Regularized regression equivalent

    problem 1: $\min_{\beta} ~f_\alpha(\beta):=\frac{1}{2}\Vert y-X\beta\Vert^2 +\alpha\Vert \beta\Vert$ ...

  5. 实现一个做双向NAT的虚拟网卡

    问题描写叙述与解决方式 还是老问题.Linux系统中通过iptables配置的NAT无法在双向通信环境中使用,你无法配置一条NAT规则实现对两个方向主动发起的流量做NAT,解决问题的方案有好几种: 1 ...

  6. javascript高级程序设计一(80-116)

    81.函数内部属性:arguments.arguments.callee.this. window.color = "red"; var o={color:"blue&q ...

  7. 安装SQL Server 2012过程中出现“启用windows功能NetFx3时出错”(错误原因、详细分析及解决方法)以及在Windows Server2012上安装.NET Framework 3.5的详细分析及安装过程

           问题:在服务器(操作系统为Windows server 2012)上安装SQL Server 2012的过程中,安装停留在下图所示的界面上,显示”正在启用操作系统功能NetFx3”随后出 ...

  8. OCP prepare 20140703

    1. trim trim('aaa' from 'aaabbbccc') 这个是错误的.ora-30001: trim set should have only one character 2. in ...

  9. 获取UIButton的一些属性

    获取文字  button.currentTitle 更多如下: @property(nullable, nonatomic,readonly,strong) NSString *currentTitl ...

  10. 在IOS开发中,属性名为id的处理方法

    在.h 文件中定义属性名为id { int _id; } @property (nonatomic, assign) int id; 在.m 文件中用synthesize声明该属性,会自动生成get和 ...