Largest Rectangle in a Histogram


Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 11637    Accepted Submission(s): 3197

Problem Description

A histogram is a polygon composed of a sequence of rectangles aligned at a common base line. The rectangles have equal widths but may have different heights. For example, the figure on the left shows the histogram that consists of rectangles with the heights
2, 1, 4, 5, 1, 3, 3, measured in units where 1 is the width of the rectangles:





Usually, histograms are used to represent discrete distributions, e.g., the frequencies of characters in texts. Note that the order of the rectangles, i.e., their heights, is important. Calculate the area of the largest rectangle in a histogram that is aligned
at the common base line, too. The figure on the right shows the largest aligned rectangle for the depicted histogram.

 

Input

The input contains several test cases. Each test case describes a histogram and starts with an integer n, denoting the number of rectangles it is composed of. You may assume that 1 <= n <= 100000. Then follow n integers h1, ..., hn, where 0 <= hi <= 1000000000.
These numbers denote the heights of the rectangles of the histogram in left-to-right order. The width of each rectangle is 1. A zero follows the input for the last test case.

 

Output

For each test case output on a single line the area of the largest rectangle in the specified histogram. Remember that this rectangle must be aligned at the common base line.

 

Sample Input

7 2 1 4 5 1 3 3

4 1000 1000 1000 1000

0



Sample Output

8

4000

 

Source

University of Ulm Local Contest 2003

题目大意:给你一个直方图,告诉你各个条形矩形的高度,求基线对齐构成的矩形中面积

最大的矩形的面积对于每个矩形。面积 = h[i]*(j-k+1),当中j,k是左右边界,h[i]是矩形

的高。而且对于j <= x <= k,h[i] <= h[x]。

本题中,找到左右边界j,k是关键。

利用动态规划的方法,对于位置i,假设左边条形矩形的高度大于它本身,那么左边的左边

界一定也满足位置i的左边界。同理假设右边条形矩形的高度大于它本身,那么右边的右边

界也一定满足位置i的右边界。迭代循环下去。直到找到i的左右边界。

#include<stdio.h>
#include<string.h> int l[100010],r[100010];
__int64 h[100010];
int main()
{
int N;
while(~scanf("%d",&N) && N!=0)
{
memset(h,0,sizeof(h));
for(int i = 1; i <= N; i++)
{
scanf("%I64d",&h[i]);
l[i] = r[i] = i;
} l[0] = 1;
r[N+1] = N;
h[0] = -1;
h[N+1] = -1;
//这上边不加就会超时,不加的话下边就可能一直while,跳不出循环
for(int i = 1; i <= N; i++)
{
while(h[l[i]-1] >= h[i])//找位置i的左边界
l[i] = l[l[i]-1];
}
for(int i = N; i >= 1; i--)
{
while(h[r[i]+1] >= h[i])//找位置i的右边界
r[i] = r[r[i]+1];
}
__int64 MaxArea = -0xffffff0;
for(int i = 1; i <= N; i++)
{
if(h[i]*(r[i]-l[i]+1) > MaxArea)
MaxArea = h[i]*(r[i]-l[i]+1);
}
printf("%I64d\n",MaxArea);
}
return 0;
}

HDU1506_Largest Rectangle in a Histogram的更多相关文章

  1. poj 2559 Largest Rectangle in a Histogram - 单调栈

    Largest Rectangle in a Histogram Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19782 ...

  2. DP专题训练之HDU 1506 Largest Rectangle in a Histogram

    Description A histogram is a polygon composed of a sequence of rectangles aligned at a common base l ...

  3. Largest Rectangle in a Histogram(DP)

    Largest Rectangle in a Histogram Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K ...

  4. POJ 2559 Largest Rectangle in a Histogram(单调栈)

    传送门 Description A histogram is a polygon composed of a sequence of rectangles aligned at a common ba ...

  5. Largest Rectangle in a Histogram(HDU1506)

    Largest Rectangle in a Histogram HDU1506 一道DP题: 思路:http://blog.csdn.net/qiqijianglu/article/details/ ...

  6. POJ 2559 Largest Rectangle in a Histogram

    Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18942   Accepted: 6083 Description A hi ...

  7. Largest Rectangle in a Histogram

    2107: Largest Rectangle in a Histogram Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 777  Solved: 22 ...

  8. HDU 1506 Largest Rectangle in a Histogram (dp左右处理边界的矩形问题)

    E - Largest Rectangle in a Histogram Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format: ...

  9. hdu---1506(Largest Rectangle in a Histogram/dp最大子矩阵)

    Largest Rectangle in a Histogram Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 ...

随机推荐

  1. Java的Git管理工具Gitblit

    From:http://www.oschina.net/p/gitblit Gitblit 是一个纯 Java 库用来管理.查看和处理 Git 资料库.相当于 Git 的 Java 管理工具. 下载地 ...

  2. yum cannot retrieve metalink for repository

    Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again

  3. Android 基本控件

    http://www.cnblogs.com/LT-blogs/archive/2012/08/07/2626118.html http://blog.csdn.net/android_tutor/a ...

  4. linux-telnet服务配置

    Telnet服务的配置:一.安装telnet软件包(通常要两个)1. telnet-client (或 telnet),这个软件包提供的是 telnet 客户端程序: 2. telnet-server ...

  5. js事件的相关收集

    1.阻止事件冒泡: IE:cancelBubble = true; 其他: stopPropagation(); 2.阻止事件的默认行为: IE: returnValue = false; 其他: p ...

  6. codevs1145

    题目描述                     Description 给定A.B.C三根足够长的细柱,在A柱上放有2n个中间有孔的圆盘,共有n个不同的尺寸,每个尺寸都有两个相同的圆盘,注意这两个圆 ...

  7. ArrayList和LinkedList区别

    一般大家都知道ArrayList和LinkedList的大致区别:      1.ArrayList是实现了基于动态数组的数据结构,LinkedList基于链表的数据结构.      2.对于随机访问 ...

  8. Inno Setup打包的程序提升为管理员权限

    Inno Setup打包的程序在Win7 64位系统上安装,安装步骤最后一步若选中运行程序,会跳出一个错误提示框. 这是因为64位win7系统运行程序时需要管理员权限,而打包的文件并没有这个权限就试图 ...

  9. 使用微信 SDK 上传图片到七牛

    总体思路是:在微信下选好图片后将图片上传到微信服务器,在后端使用微信服务器返回的图片 serverId 加上调用接口的 ApiTicket 通过七牛的 fetch 接口向微信服务器下载多媒体文件的接口 ...

  10. jsoup_解析任意网站,做任意网站客户端

    jsoup是一个解析网页源码的开源库,他能按照给定的规则提取出一个网页中的任意元素,和其他网页解析库不同的是,他提取网页内容的方式和css.jquery的选择器非常相似.因此如果你懂得前端的知识,只需 ...