Largest Rectangle in a Histogram


Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 11637    Accepted Submission(s): 3197

Problem Description

A histogram is a polygon composed of a sequence of rectangles aligned at a common base line. The rectangles have equal widths but may have different heights. For example, the figure on the left shows the histogram that consists of rectangles with the heights
2, 1, 4, 5, 1, 3, 3, measured in units where 1 is the width of the rectangles:





Usually, histograms are used to represent discrete distributions, e.g., the frequencies of characters in texts. Note that the order of the rectangles, i.e., their heights, is important. Calculate the area of the largest rectangle in a histogram that is aligned
at the common base line, too. The figure on the right shows the largest aligned rectangle for the depicted histogram.

 

Input

The input contains several test cases. Each test case describes a histogram and starts with an integer n, denoting the number of rectangles it is composed of. You may assume that 1 <= n <= 100000. Then follow n integers h1, ..., hn, where 0 <= hi <= 1000000000.
These numbers denote the heights of the rectangles of the histogram in left-to-right order. The width of each rectangle is 1. A zero follows the input for the last test case.

 

Output

For each test case output on a single line the area of the largest rectangle in the specified histogram. Remember that this rectangle must be aligned at the common base line.

 

Sample Input

7 2 1 4 5 1 3 3

4 1000 1000 1000 1000

0



Sample Output

8

4000

 

Source

University of Ulm Local Contest 2003

题目大意:给你一个直方图,告诉你各个条形矩形的高度,求基线对齐构成的矩形中面积

最大的矩形的面积对于每个矩形。面积 = h[i]*(j-k+1),当中j,k是左右边界,h[i]是矩形

的高。而且对于j <= x <= k,h[i] <= h[x]。

本题中,找到左右边界j,k是关键。

利用动态规划的方法,对于位置i,假设左边条形矩形的高度大于它本身,那么左边的左边

界一定也满足位置i的左边界。同理假设右边条形矩形的高度大于它本身,那么右边的右边

界也一定满足位置i的右边界。迭代循环下去。直到找到i的左右边界。

#include<stdio.h>
#include<string.h> int l[100010],r[100010];
__int64 h[100010];
int main()
{
int N;
while(~scanf("%d",&N) && N!=0)
{
memset(h,0,sizeof(h));
for(int i = 1; i <= N; i++)
{
scanf("%I64d",&h[i]);
l[i] = r[i] = i;
} l[0] = 1;
r[N+1] = N;
h[0] = -1;
h[N+1] = -1;
//这上边不加就会超时,不加的话下边就可能一直while,跳不出循环
for(int i = 1; i <= N; i++)
{
while(h[l[i]-1] >= h[i])//找位置i的左边界
l[i] = l[l[i]-1];
}
for(int i = N; i >= 1; i--)
{
while(h[r[i]+1] >= h[i])//找位置i的右边界
r[i] = r[r[i]+1];
}
__int64 MaxArea = -0xffffff0;
for(int i = 1; i <= N; i++)
{
if(h[i]*(r[i]-l[i]+1) > MaxArea)
MaxArea = h[i]*(r[i]-l[i]+1);
}
printf("%I64d\n",MaxArea);
}
return 0;
}

HDU1506_Largest Rectangle in a Histogram的更多相关文章

  1. poj 2559 Largest Rectangle in a Histogram - 单调栈

    Largest Rectangle in a Histogram Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19782 ...

  2. DP专题训练之HDU 1506 Largest Rectangle in a Histogram

    Description A histogram is a polygon composed of a sequence of rectangles aligned at a common base l ...

  3. Largest Rectangle in a Histogram(DP)

    Largest Rectangle in a Histogram Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K ...

  4. POJ 2559 Largest Rectangle in a Histogram(单调栈)

    传送门 Description A histogram is a polygon composed of a sequence of rectangles aligned at a common ba ...

  5. Largest Rectangle in a Histogram(HDU1506)

    Largest Rectangle in a Histogram HDU1506 一道DP题: 思路:http://blog.csdn.net/qiqijianglu/article/details/ ...

  6. POJ 2559 Largest Rectangle in a Histogram

    Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18942   Accepted: 6083 Description A hi ...

  7. Largest Rectangle in a Histogram

    2107: Largest Rectangle in a Histogram Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 777  Solved: 22 ...

  8. HDU 1506 Largest Rectangle in a Histogram (dp左右处理边界的矩形问题)

    E - Largest Rectangle in a Histogram Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format: ...

  9. hdu---1506(Largest Rectangle in a Histogram/dp最大子矩阵)

    Largest Rectangle in a Histogram Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 ...

随机推荐

  1. inet address example(socket)

    package com.opensource.socket; import java.net.Inet4Address; import java.net.Inet6Address; import ja ...

  2. pack布局

    Chapter 2. Geometry Management 第2章 布局管理: 显示部件在屏幕上,他们必须被传递给布局管理器. 布局管理器 控制部件的位置和大小 在显示窗口,几个布局管理器是可用的在 ...

  3. VB读写Excel

        近期用excel和VB比較多,就简单的学习了一下VB中对Excel的处理.今天就介绍一些吧.       在VB中要想调用Excel,须要打开VB编程环境“project”菜单中的“引用”项目 ...

  4. Oracle11g重建EM 报ORA-20001: SYSMAN already exists

    日志: Apr , :: PM oracle.sysman.emcp.EMReposConfig createRepository : SYSMAN already exists.. ORA-0651 ...

  5. 修改ORACLE-NLS_DATE_FORMAT时间格式的四种方式

    修改ORACLE-NLS_DATE_FORMAT时间格式的四种方式 改变ORACLE -NLS_DATE_FORMAT中时间显示格式的显示有以下方式: 1.可以在用户环境变量中指定(LINUX). 在 ...

  6. HTML5新特性学习-2

    本文在于巩固基础 HTML5绘图基础 <canvas>画布元素的使用 <div> <canvas id="can" width="200px ...

  7. 使用ADO.net中的链接字符串

    需要引用:System.Configuration命名空间 ConfigurationManager.ConnectionStrings["sqlConnStr"].Connect ...

  8. 读书笔记-Coding faster(英文版)

    读书笔记-Coding faster(英文版) Getting More Productive with Microsoft visual Studio Author: Zain Naboulsi S ...

  9. C#l连接OPC进行数据交互

    步骤 :引用 OPCNETAPI.DLL&&OPCNETAPI.COM.DLL 1.查询服务器      2. 连接服务器  3. 读取数据     4.写入数据 1.查询服务器 :根 ...

  10. js常用DOM操作

    在博客园看到了苏夏写的常用DOM整理文章,地址:http://www.cnblogs.com/cabbagen/p/4579412.html,然后抽时间都试了一下这些常用的DOM操作.在这里记录一下. ...