题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4975

Problem Description
Dragon is studying math. One day, he drew a table with several rows and columns, randomly wrote numbers on each elements of the table. Then he counted the sum of each row and column. Since he thought the map will be useless after he got the sums, he destroyed
the table after that.



However Dragon's mom came back and found what he had done. She would give dragon a feast if Dragon could reconstruct the table, otherwise keep Dragon hungry. Dragon is so young and so simple so that the original numbers in the table are one-digit number (e.g.
0-9).



Could you help Dragon to do that?
 
Input
The first line of input contains only one integer, T(<=30), the number of test cases. Following T blocks, each block describes one test case.



There are three lines for each block. The first line contains two integers N(<=500) and M(<=500), showing the number of rows and columns.



The second line contains N integer show the sum of each row.



The third line contains M integer show the sum of each column.
 
Output
Each output should occupy one line. Each line should start with "Case #i: ", with i implying the case number. For each case, if we cannot get the original table, just output: "So naive!", else if we can reconstruct the table by more than one ways, you should
output one line contains only: "So young!", otherwise (only one way to reconstruct the table) you should output: "So simple!".
 
Sample Input
3
1 1
5
5
2 2
0 10
0 10
2 2
2 2
2 2
 
Sample Output
Case #1: So simple!
Case #2: So naive!
Case #3: So young!
 
Source

题意:

给出每行每列的和,问是否存在这种表格;每一个小格放的数字仅仅能是0--9。

官方题解:http://blog.sina.com.cn/s/blog_6bddecdc0102v01l.html

代码例如以下:(套用别人HDU4888的模板)

#include<stdio.h>
#include<iostream>
#include<string.h>
#include<algorithm>
#include<math.h>
#include<queue>
using namespace std;
#define ll __int64
#define eps 1e-8
const ll Mod=(1e9+7);
const int maxn = 510;
const int maxm = 50100; int n,m,k;
int r[maxn],c[maxn];
int ma[maxn][maxn]; const int maxnode = 10000 + 5;
const int maxedge = 2*1000000 + 5;
const int oo = 1000000000;
int node, src, dest, nedge;
int head[maxnode], point[maxedge], next1[maxedge], flow[maxedge], capa[maxedge];//point[x]==y表示第x条边连接y,head,next为邻接表,flow[x]表示x边的动态值,capa[x]表示x边的初始值
int dist[maxnode], Q[maxnode], work[maxnode];//dist[i]表示i点的等级
void init(int _node, int _src, int _dest) //初始化,node表示点的个数,src表示起点,dest表示终点
{
node = _node;
src = _src;
dest = _dest;
for (int i = 0; i < node; i++) head[i] = -1;
nedge = 0;
}
void addedge(int u, int v, int c1, int c2) //添加一条u到v流量为c1,v到u流量为c2的两条边
{
point[nedge] = v, capa[nedge] = c1, flow[nedge] = 0, next1[nedge] = head[u], head[u] = (nedge++);
point[nedge] = u, capa[nedge] = c2, flow[nedge] = 0, next1[nedge] = head[v], head[v] = (nedge++);
}
bool dinic_bfs()
{
memset(dist, 255, sizeof (dist));
dist[src] = 0;
int sizeQ = 0;
Q[sizeQ++] = src;
for (int cl = 0; cl < sizeQ; cl++)
for (int k = Q[cl], i = head[k]; i >= 0; i = next1[i])
if (flow[i] < capa[i] && dist[point[i]] < 0)
{
dist[point[i]] = dist[k] + 1;
Q[sizeQ++] = point[i];
}
return dist[dest] >= 0;
}
int dinic_dfs(int x, int exp)
{
if (x == dest) return exp;
for (int &i = work[x]; i >= 0; i = next1[i])
{
int v = point[i], tmp;
if (flow[i] < capa[i] && dist[v] == dist[x] + 1 && (tmp = dinic_dfs(v, min(exp, capa[i] - flow[i]))) > 0)
{
flow[i] += tmp;
flow[i^1] -= tmp;
return tmp;
}
}
return 0;
}
int dinic_flow()
{
int result = 0;
while (dinic_bfs())
{
for (int i = 0; i < node; i++) work[i] = head[i];
while (1)
{
int delta = dinic_dfs(src, oo);
if (delta == 0) break;
result += delta;
}
}
return result;
}
//建图前,执行一遍init();
//加边时,执行addedge(a,b,c,0),表示点a到b流量为c的边建成(注意点序号要从0開始)
//求解最大流执行dinic_flow(),返回值即为答案 bool judge(int sumrow)
{
int flow = 1,cost = 0;
for(int i = 1; i <= n; i++)
for(int j = n+1; j <= n+m; j ++)
addedge(i,j,k,0);
flow=dinic_flow();
if(flow != sumrow)
return false;
return true;
}
int main()
{
//k为能填原图能填的数字的最大值
int t;
int cas = 0;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
k = 9;//最多能填9
init(n+m+2,0,n+m+1);
int flag = 0;
int sumrow = 0,colrow = 0;
for(int i = 1; i <= n; i++)
{
scanf("%d",&r[i]);
addedge(0,i,r[i],0);
sumrow += r[i];
if(r[i]<0 || r[i]>m*k)
flag = 1;
}
for(int j = 1; j <= m; j ++)
{
scanf("%d",&c[j]);
addedge(j+n,n+m+1,c[j],0);
colrow += c[j];
if(c[j]<0 || c[j]>n*k)
flag = 1;
}
if(sumrow != colrow)
{
printf("Case #%d: So naive!\n",++cas);
continue;
}
if(!judge(sumrow))
flag = 1;
if(flag == 1)
{
printf("Case #%d: So naive!\n",++cas);
continue;
}
memset(ma,-1,sizeof(ma));
int i,j;
for(i=1; i<=n; i++)
if(r[i]==0)
for(j=1; j<=m; j++)
ma[i][j]=0;
for(j=1; j<=m; j++)
if(c[j]==0)
for(i=1; i<=n; i++)
ma[i][j]=0;
int tt=2;
int sum,num,temp;
while(tt--)
{
for(i=1; i<=n; i++)
{
if(r[i]==0)
{
for(j=1; j<=m; j++)
if(ma[i][j]==-1)
ma[i][j]=0;
continue;
}
sum=0;
num=0;
for(j=1; j<=m; j++)
{
if(ma[i][j]==-1)
{
num++;
temp=j;
sum+=min(k,c[j]);
}
}
if(num==1)
{
ma[i][temp]=r[i];
r[i]-=ma[i][temp];
c[temp]-=ma[i][temp];
continue;
}
else if(sum==r[i])
{
for(j=1; j<=m; j++)
{
if(ma[i][j]==-1)
{
ma[i][j]=min(k,c[j]);
r[i]-=ma[i][j];
c[j]-=ma[i][j];
}
}
}
}
for(j=1; j<=m; j++)
{
if(c[j]==0)
{
for(i=1; i<=n; i++)
if(ma[i][j]==-1)
ma[i][j]=0;
continue;
}
sum=0;
num=0;
for(i=1; i<=n; i++)
{
if(ma[i][j]==-1)
{
num++;
temp=i;
sum+=min(k,r[i]);
}
}
if(num==1)
{
ma[temp][j]=c[j];
r[temp]-=ma[temp][j];
c[j]-=ma[temp][j];
continue;
}
else if(sum==c[j])
{
for(i=1; i<=n; i++)
{
if(ma[i][j]==-1)
{
ma[i][j]=min(k,r[i]);
r[i]-=ma[i][j];
c[j]-=ma[i][j];
}
}
}
}
}
flag=0;
for(i=1; i<=n; i++)
if(r[i]!=0)
{
flag=1;
break;
}
for(j=1; j<=m; j++)
if(c[j]!=0)
{
flag=1;
break;
}
if(flag==1)
printf("Case #%d: So young!\n",++cas);
else
{
printf("Case #%d: So simple!\n",++cas);
/* for(i=1; i<=n; i++)
{
for(j=1; j<m; j++)
printf("%d ",ma[i][j]);
printf("%d\n",ma[i][m]);
}*/
}
}
return 0;
}

hdu 4975 A simple Gaussian elimination problem.(网络流,推断矩阵是否存在)的更多相关文章

  1. HDU 4975 A simple Gaussian elimination problem.

    A simple Gaussian elimination problem. Time Limit: 1000ms Memory Limit: 65536KB This problem will be ...

  2. hdu - 4975 - A simple Gaussian elimination problem.(最大流量)

    意甲冠军:要在N好M行和列以及列的数字矩阵和,每个元件的尺寸不超过9,询问是否有这样的矩阵,是独一无二的N(1 ≤ N ≤ 500) , M(1 ≤ M ≤ 500). 主题链接:http://acm ...

  3. hdu 4975 A simple Gaussian elimination problem 最大流+找环

    原题链接 http://acm.hdu.edu.cn/showproblem.php?pid=4975 这是一道很裸的最大流,将每个点(i,j)看作是从Ri向Cj的一条容量为9的边,从源点除法连接每个 ...

  4. HDOJ 4975 A simple Gaussian elimination problem.

    和HDOJ4888是一样的问题,最大流推断多解 1.把ISAP卡的根本出不来结果,仅仅能把全为0或者全为满流的给特判掉...... 2.在残量网络中找大于2的圈要用一种类似tarjian的方法从汇点開 ...

  5. A simple Gaussian elimination problem.(hdu4975)网络流+最大流

    A simple Gaussian elimination problem. Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65 ...

  6. hdu4975 A simple Gaussian elimination problem.(正确解法 最大流+删边判环)(Updated 2014-10-16)

    这题标程是错的,网上很多题解也是错的. http://acm.hdu.edu.cn/showproblem.php?pid=4975 2014 Multi-University Training Co ...

  7. A simple Gaussian elimination problem.

    hdu4975:http://acm.hdu.edu.cn/showproblem.php?pid=4975 题意:给你一个n*m的矩阵,矩阵中的元素都是0--9,现在给你这个矩阵的每一行和每一列的和 ...

  8. hdu4975 A simple Gaussian elimination problem.(最大流+判环)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4975 题意:和hdu4888基本一样( http://www.cnblogs.com/a-clown/ ...

  9. hdu 4972 A simple dynamic programming problem(高效)

    pid=4972" target="_blank" style="">题目链接:hdu 4972 A simple dynamic progra ...

随机推荐

  1. HDOJ 1003 Max Sum(线性dp)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1003 思路分析:该问题为最大连续子段和问题,使用动态规划求解: 1)最优子结构:假设数组为A[0, 1 ...

  2. windows上放弃使用PyGTK

    windows上放弃使用PyGTK - riag的专栏 - 博客频道 - CSDN.NET windows上放弃使用PyGTK 分类: python 2010-03-31 16:47 1054人阅读 ...

  3. 碰撞缓冲效果的导航条 js

  4. [译]Stairway to Integration Services Level 16 – Flexible Source Locations (多文件导入)

    介绍 在本文中我们将利用SSIS参数,变量 以及 Foreach Loop Container 从多个源动态导入数据. 开始前我们先下载一些数据.WeatherData_Dec08_Apr09.zip ...

  5. Cannot mix incompatible Qt library (version 0x40801) with this library (version 0x40804)

    安装EMAN2(单颗粒重构的软件)之后,运行e2projectmanager.py来启动程序出现了这个错误. 去网上找了一下,发现一个靠谱的方案,这个问题出现是由于EMAN2这个程序自带了Qt的库,而 ...

  6. BZOJ 1230: [Usaco2008 Nov]lites 开关灯( 线段树 )

    线段树.. --------------------------------------------------------------------------------- #include< ...

  7. JDK和JRE的差异和区别

    来源:http://docs.oracle.com/javase/7/docs/

  8. Shell Script(1)----variable compare

    PS:在学习python的时间里,抽空复习自己学习的Linux下的shell脚本知识点 1.数据类型 学习一门语言,比较关心其数据的表示方式,以及数据的类型,这里首先看一个bash shell的脚本 ...

  9. 如何用一个语句判断一个整数是不是二的整数次幂——从一道简单的面试题浅谈C语言的类型提升(type promotion)

    最近招聘季,看JULY大哥的面试100题时,碰到这么一个扩展问题: 如何用一个语句判断一个整数是不是二的整数次幂?(此题在编程之美也有) easy, 2的整数次幂的二进制形式只有一个1,只要用i和i- ...

  10. Web Api Route 注册要放在 Mvc Route 注册前

    今天想研究一下Web Api,写了一个测试Api,打开网站后浏览一下,可是却提示找不到方法,刚开始以为哪里配置错了,可找了半天也没见. 因为我是在一个现有Mvc站点做的Demo,所以打算新建一个Mvc ...