题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4975

Problem Description
Dragon is studying math. One day, he drew a table with several rows and columns, randomly wrote numbers on each elements of the table. Then he counted the sum of each row and column. Since he thought the map will be useless after he got the sums, he destroyed
the table after that.



However Dragon's mom came back and found what he had done. She would give dragon a feast if Dragon could reconstruct the table, otherwise keep Dragon hungry. Dragon is so young and so simple so that the original numbers in the table are one-digit number (e.g.
0-9).



Could you help Dragon to do that?
 
Input
The first line of input contains only one integer, T(<=30), the number of test cases. Following T blocks, each block describes one test case.



There are three lines for each block. The first line contains two integers N(<=500) and M(<=500), showing the number of rows and columns.



The second line contains N integer show the sum of each row.



The third line contains M integer show the sum of each column.
 
Output
Each output should occupy one line. Each line should start with "Case #i: ", with i implying the case number. For each case, if we cannot get the original table, just output: "So naive!", else if we can reconstruct the table by more than one ways, you should
output one line contains only: "So young!", otherwise (only one way to reconstruct the table) you should output: "So simple!".
 
Sample Input
3
1 1
5
5
2 2
0 10
0 10
2 2
2 2
2 2
 
Sample Output
Case #1: So simple!
Case #2: So naive!
Case #3: So young!
 
Source

题意:

给出每行每列的和,问是否存在这种表格;每一个小格放的数字仅仅能是0--9。

官方题解:http://blog.sina.com.cn/s/blog_6bddecdc0102v01l.html

代码例如以下:(套用别人HDU4888的模板)

#include<stdio.h>
#include<iostream>
#include<string.h>
#include<algorithm>
#include<math.h>
#include<queue>
using namespace std;
#define ll __int64
#define eps 1e-8
const ll Mod=(1e9+7);
const int maxn = 510;
const int maxm = 50100; int n,m,k;
int r[maxn],c[maxn];
int ma[maxn][maxn]; const int maxnode = 10000 + 5;
const int maxedge = 2*1000000 + 5;
const int oo = 1000000000;
int node, src, dest, nedge;
int head[maxnode], point[maxedge], next1[maxedge], flow[maxedge], capa[maxedge];//point[x]==y表示第x条边连接y,head,next为邻接表,flow[x]表示x边的动态值,capa[x]表示x边的初始值
int dist[maxnode], Q[maxnode], work[maxnode];//dist[i]表示i点的等级
void init(int _node, int _src, int _dest) //初始化,node表示点的个数,src表示起点,dest表示终点
{
node = _node;
src = _src;
dest = _dest;
for (int i = 0; i < node; i++) head[i] = -1;
nedge = 0;
}
void addedge(int u, int v, int c1, int c2) //添加一条u到v流量为c1,v到u流量为c2的两条边
{
point[nedge] = v, capa[nedge] = c1, flow[nedge] = 0, next1[nedge] = head[u], head[u] = (nedge++);
point[nedge] = u, capa[nedge] = c2, flow[nedge] = 0, next1[nedge] = head[v], head[v] = (nedge++);
}
bool dinic_bfs()
{
memset(dist, 255, sizeof (dist));
dist[src] = 0;
int sizeQ = 0;
Q[sizeQ++] = src;
for (int cl = 0; cl < sizeQ; cl++)
for (int k = Q[cl], i = head[k]; i >= 0; i = next1[i])
if (flow[i] < capa[i] && dist[point[i]] < 0)
{
dist[point[i]] = dist[k] + 1;
Q[sizeQ++] = point[i];
}
return dist[dest] >= 0;
}
int dinic_dfs(int x, int exp)
{
if (x == dest) return exp;
for (int &i = work[x]; i >= 0; i = next1[i])
{
int v = point[i], tmp;
if (flow[i] < capa[i] && dist[v] == dist[x] + 1 && (tmp = dinic_dfs(v, min(exp, capa[i] - flow[i]))) > 0)
{
flow[i] += tmp;
flow[i^1] -= tmp;
return tmp;
}
}
return 0;
}
int dinic_flow()
{
int result = 0;
while (dinic_bfs())
{
for (int i = 0; i < node; i++) work[i] = head[i];
while (1)
{
int delta = dinic_dfs(src, oo);
if (delta == 0) break;
result += delta;
}
}
return result;
}
//建图前,执行一遍init();
//加边时,执行addedge(a,b,c,0),表示点a到b流量为c的边建成(注意点序号要从0開始)
//求解最大流执行dinic_flow(),返回值即为答案 bool judge(int sumrow)
{
int flow = 1,cost = 0;
for(int i = 1; i <= n; i++)
for(int j = n+1; j <= n+m; j ++)
addedge(i,j,k,0);
flow=dinic_flow();
if(flow != sumrow)
return false;
return true;
}
int main()
{
//k为能填原图能填的数字的最大值
int t;
int cas = 0;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
k = 9;//最多能填9
init(n+m+2,0,n+m+1);
int flag = 0;
int sumrow = 0,colrow = 0;
for(int i = 1; i <= n; i++)
{
scanf("%d",&r[i]);
addedge(0,i,r[i],0);
sumrow += r[i];
if(r[i]<0 || r[i]>m*k)
flag = 1;
}
for(int j = 1; j <= m; j ++)
{
scanf("%d",&c[j]);
addedge(j+n,n+m+1,c[j],0);
colrow += c[j];
if(c[j]<0 || c[j]>n*k)
flag = 1;
}
if(sumrow != colrow)
{
printf("Case #%d: So naive!\n",++cas);
continue;
}
if(!judge(sumrow))
flag = 1;
if(flag == 1)
{
printf("Case #%d: So naive!\n",++cas);
continue;
}
memset(ma,-1,sizeof(ma));
int i,j;
for(i=1; i<=n; i++)
if(r[i]==0)
for(j=1; j<=m; j++)
ma[i][j]=0;
for(j=1; j<=m; j++)
if(c[j]==0)
for(i=1; i<=n; i++)
ma[i][j]=0;
int tt=2;
int sum,num,temp;
while(tt--)
{
for(i=1; i<=n; i++)
{
if(r[i]==0)
{
for(j=1; j<=m; j++)
if(ma[i][j]==-1)
ma[i][j]=0;
continue;
}
sum=0;
num=0;
for(j=1; j<=m; j++)
{
if(ma[i][j]==-1)
{
num++;
temp=j;
sum+=min(k,c[j]);
}
}
if(num==1)
{
ma[i][temp]=r[i];
r[i]-=ma[i][temp];
c[temp]-=ma[i][temp];
continue;
}
else if(sum==r[i])
{
for(j=1; j<=m; j++)
{
if(ma[i][j]==-1)
{
ma[i][j]=min(k,c[j]);
r[i]-=ma[i][j];
c[j]-=ma[i][j];
}
}
}
}
for(j=1; j<=m; j++)
{
if(c[j]==0)
{
for(i=1; i<=n; i++)
if(ma[i][j]==-1)
ma[i][j]=0;
continue;
}
sum=0;
num=0;
for(i=1; i<=n; i++)
{
if(ma[i][j]==-1)
{
num++;
temp=i;
sum+=min(k,r[i]);
}
}
if(num==1)
{
ma[temp][j]=c[j];
r[temp]-=ma[temp][j];
c[j]-=ma[temp][j];
continue;
}
else if(sum==c[j])
{
for(i=1; i<=n; i++)
{
if(ma[i][j]==-1)
{
ma[i][j]=min(k,r[i]);
r[i]-=ma[i][j];
c[j]-=ma[i][j];
}
}
}
}
}
flag=0;
for(i=1; i<=n; i++)
if(r[i]!=0)
{
flag=1;
break;
}
for(j=1; j<=m; j++)
if(c[j]!=0)
{
flag=1;
break;
}
if(flag==1)
printf("Case #%d: So young!\n",++cas);
else
{
printf("Case #%d: So simple!\n",++cas);
/* for(i=1; i<=n; i++)
{
for(j=1; j<m; j++)
printf("%d ",ma[i][j]);
printf("%d\n",ma[i][m]);
}*/
}
}
return 0;
}

hdu 4975 A simple Gaussian elimination problem.(网络流,推断矩阵是否存在)的更多相关文章

  1. HDU 4975 A simple Gaussian elimination problem.

    A simple Gaussian elimination problem. Time Limit: 1000ms Memory Limit: 65536KB This problem will be ...

  2. hdu - 4975 - A simple Gaussian elimination problem.(最大流量)

    意甲冠军:要在N好M行和列以及列的数字矩阵和,每个元件的尺寸不超过9,询问是否有这样的矩阵,是独一无二的N(1 ≤ N ≤ 500) , M(1 ≤ M ≤ 500). 主题链接:http://acm ...

  3. hdu 4975 A simple Gaussian elimination problem 最大流+找环

    原题链接 http://acm.hdu.edu.cn/showproblem.php?pid=4975 这是一道很裸的最大流,将每个点(i,j)看作是从Ri向Cj的一条容量为9的边,从源点除法连接每个 ...

  4. HDOJ 4975 A simple Gaussian elimination problem.

    和HDOJ4888是一样的问题,最大流推断多解 1.把ISAP卡的根本出不来结果,仅仅能把全为0或者全为满流的给特判掉...... 2.在残量网络中找大于2的圈要用一种类似tarjian的方法从汇点開 ...

  5. A simple Gaussian elimination problem.(hdu4975)网络流+最大流

    A simple Gaussian elimination problem. Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65 ...

  6. hdu4975 A simple Gaussian elimination problem.(正确解法 最大流+删边判环)(Updated 2014-10-16)

    这题标程是错的,网上很多题解也是错的. http://acm.hdu.edu.cn/showproblem.php?pid=4975 2014 Multi-University Training Co ...

  7. A simple Gaussian elimination problem.

    hdu4975:http://acm.hdu.edu.cn/showproblem.php?pid=4975 题意:给你一个n*m的矩阵,矩阵中的元素都是0--9,现在给你这个矩阵的每一行和每一列的和 ...

  8. hdu4975 A simple Gaussian elimination problem.(最大流+判环)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4975 题意:和hdu4888基本一样( http://www.cnblogs.com/a-clown/ ...

  9. hdu 4972 A simple dynamic programming problem(高效)

    pid=4972" target="_blank" style="">题目链接:hdu 4972 A simple dynamic progra ...

随机推荐

  1. JAVA GUI学习 - JDialog模式、非模式窗口组件学习

    /** * JDilog学习笔记 * @author Wfei * */ public class JDialogKnow extends JFrame { JDialog jDialog; JBut ...

  2. 关于GROUP BY的应用

    前面收藏了别人的SQL语句操作,可是没有实战,也未知学的如何 正好今天有个事需要做一下 (sql server 2000) 三个表:stuInf,sType,sinInf分别为学生信息表,类型表,信息 ...

  3. Airport(未解决。。。)

    Airport Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Sub ...

  4. Python:2D画图库matplotlib学习总结

    本文为学习笔记----总结!大部分为demo.一部分为学习中遇到的问题总结.包含怎么设置标签为中文等.matlab博大精深.须要用的时候再继续吧. Pyplot tutorial Demo地址为:点击 ...

  5. ExtJS中form提交之后获取返回的json值

    simpleForm.form.doAction('submit', { url : 'editUserType', method : 'post', params : '', // 提交成功后执行s ...

  6. 初学MVC

    学习MVC基础:C#. ADO.NET .html.javascript.ASP.Net .WebFrom MVC模式两种理解:一种是表现模式,另一种是架构模式.它将应用程序分成三个主要的组件:视图( ...

  7. Linux 环境下 fork 函数和 exec 函数族的使用

    前言 接触 Linux 已经有几个月了,以前在网上看各路大神均表示 Windows 是最烂的开发平台,我总是不以为然,但是经过这段时间琢磨,确实觉得 Linux 开发给我带来不少的便利.下面总结一下学 ...

  8. Nginx 之一:编译安装nginx 1.8.1 及配置

    一:基介绍 官网地址www.nginx.org,nginx是由1994年毕业于俄罗斯国立莫斯科鲍曼科技大学的同学为俄罗斯rambler.ru公司开发的,开发工作最早从2002年开始,第一次公开发布时间 ...

  9. Linux 中将用户添加到组的指令

    在 Linux 操作系统下,如何添加一个新用户到一个特定的组中?如何同时将用户添加到多个组中?又如何将一个已存在的用户移动到某个组或者给他增加一个组?对于不常用 Linux 的人来讲,记忆 Linux ...

  10. 生成唯一32位ID编码代码Java(GUID)

    源码下载链接:http://pan.baidu.com/s/1jGCEWlC 扫扫关注"茶爸爸"微信公众号 坚持最初的执着,从不曾有半点懈怠,为优秀而努力,为证明自己而活. /* ...