题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4975

Problem Description
Dragon is studying math. One day, he drew a table with several rows and columns, randomly wrote numbers on each elements of the table. Then he counted the sum of each row and column. Since he thought the map will be useless after he got the sums, he destroyed
the table after that.



However Dragon's mom came back and found what he had done. She would give dragon a feast if Dragon could reconstruct the table, otherwise keep Dragon hungry. Dragon is so young and so simple so that the original numbers in the table are one-digit number (e.g.
0-9).



Could you help Dragon to do that?
 
Input
The first line of input contains only one integer, T(<=30), the number of test cases. Following T blocks, each block describes one test case.



There are three lines for each block. The first line contains two integers N(<=500) and M(<=500), showing the number of rows and columns.



The second line contains N integer show the sum of each row.



The third line contains M integer show the sum of each column.
 
Output
Each output should occupy one line. Each line should start with "Case #i: ", with i implying the case number. For each case, if we cannot get the original table, just output: "So naive!", else if we can reconstruct the table by more than one ways, you should
output one line contains only: "So young!", otherwise (only one way to reconstruct the table) you should output: "So simple!".
 
Sample Input
3
1 1
5
5
2 2
0 10
0 10
2 2
2 2
2 2
 
Sample Output
Case #1: So simple!
Case #2: So naive!
Case #3: So young!
 
Source

题意:

给出每行每列的和,问是否存在这种表格;每一个小格放的数字仅仅能是0--9。

官方题解:http://blog.sina.com.cn/s/blog_6bddecdc0102v01l.html

代码例如以下:(套用别人HDU4888的模板)

#include<stdio.h>
#include<iostream>
#include<string.h>
#include<algorithm>
#include<math.h>
#include<queue>
using namespace std;
#define ll __int64
#define eps 1e-8
const ll Mod=(1e9+7);
const int maxn = 510;
const int maxm = 50100; int n,m,k;
int r[maxn],c[maxn];
int ma[maxn][maxn]; const int maxnode = 10000 + 5;
const int maxedge = 2*1000000 + 5;
const int oo = 1000000000;
int node, src, dest, nedge;
int head[maxnode], point[maxedge], next1[maxedge], flow[maxedge], capa[maxedge];//point[x]==y表示第x条边连接y,head,next为邻接表,flow[x]表示x边的动态值,capa[x]表示x边的初始值
int dist[maxnode], Q[maxnode], work[maxnode];//dist[i]表示i点的等级
void init(int _node, int _src, int _dest) //初始化,node表示点的个数,src表示起点,dest表示终点
{
node = _node;
src = _src;
dest = _dest;
for (int i = 0; i < node; i++) head[i] = -1;
nedge = 0;
}
void addedge(int u, int v, int c1, int c2) //添加一条u到v流量为c1,v到u流量为c2的两条边
{
point[nedge] = v, capa[nedge] = c1, flow[nedge] = 0, next1[nedge] = head[u], head[u] = (nedge++);
point[nedge] = u, capa[nedge] = c2, flow[nedge] = 0, next1[nedge] = head[v], head[v] = (nedge++);
}
bool dinic_bfs()
{
memset(dist, 255, sizeof (dist));
dist[src] = 0;
int sizeQ = 0;
Q[sizeQ++] = src;
for (int cl = 0; cl < sizeQ; cl++)
for (int k = Q[cl], i = head[k]; i >= 0; i = next1[i])
if (flow[i] < capa[i] && dist[point[i]] < 0)
{
dist[point[i]] = dist[k] + 1;
Q[sizeQ++] = point[i];
}
return dist[dest] >= 0;
}
int dinic_dfs(int x, int exp)
{
if (x == dest) return exp;
for (int &i = work[x]; i >= 0; i = next1[i])
{
int v = point[i], tmp;
if (flow[i] < capa[i] && dist[v] == dist[x] + 1 && (tmp = dinic_dfs(v, min(exp, capa[i] - flow[i]))) > 0)
{
flow[i] += tmp;
flow[i^1] -= tmp;
return tmp;
}
}
return 0;
}
int dinic_flow()
{
int result = 0;
while (dinic_bfs())
{
for (int i = 0; i < node; i++) work[i] = head[i];
while (1)
{
int delta = dinic_dfs(src, oo);
if (delta == 0) break;
result += delta;
}
}
return result;
}
//建图前,执行一遍init();
//加边时,执行addedge(a,b,c,0),表示点a到b流量为c的边建成(注意点序号要从0開始)
//求解最大流执行dinic_flow(),返回值即为答案 bool judge(int sumrow)
{
int flow = 1,cost = 0;
for(int i = 1; i <= n; i++)
for(int j = n+1; j <= n+m; j ++)
addedge(i,j,k,0);
flow=dinic_flow();
if(flow != sumrow)
return false;
return true;
}
int main()
{
//k为能填原图能填的数字的最大值
int t;
int cas = 0;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
k = 9;//最多能填9
init(n+m+2,0,n+m+1);
int flag = 0;
int sumrow = 0,colrow = 0;
for(int i = 1; i <= n; i++)
{
scanf("%d",&r[i]);
addedge(0,i,r[i],0);
sumrow += r[i];
if(r[i]<0 || r[i]>m*k)
flag = 1;
}
for(int j = 1; j <= m; j ++)
{
scanf("%d",&c[j]);
addedge(j+n,n+m+1,c[j],0);
colrow += c[j];
if(c[j]<0 || c[j]>n*k)
flag = 1;
}
if(sumrow != colrow)
{
printf("Case #%d: So naive!\n",++cas);
continue;
}
if(!judge(sumrow))
flag = 1;
if(flag == 1)
{
printf("Case #%d: So naive!\n",++cas);
continue;
}
memset(ma,-1,sizeof(ma));
int i,j;
for(i=1; i<=n; i++)
if(r[i]==0)
for(j=1; j<=m; j++)
ma[i][j]=0;
for(j=1; j<=m; j++)
if(c[j]==0)
for(i=1; i<=n; i++)
ma[i][j]=0;
int tt=2;
int sum,num,temp;
while(tt--)
{
for(i=1; i<=n; i++)
{
if(r[i]==0)
{
for(j=1; j<=m; j++)
if(ma[i][j]==-1)
ma[i][j]=0;
continue;
}
sum=0;
num=0;
for(j=1; j<=m; j++)
{
if(ma[i][j]==-1)
{
num++;
temp=j;
sum+=min(k,c[j]);
}
}
if(num==1)
{
ma[i][temp]=r[i];
r[i]-=ma[i][temp];
c[temp]-=ma[i][temp];
continue;
}
else if(sum==r[i])
{
for(j=1; j<=m; j++)
{
if(ma[i][j]==-1)
{
ma[i][j]=min(k,c[j]);
r[i]-=ma[i][j];
c[j]-=ma[i][j];
}
}
}
}
for(j=1; j<=m; j++)
{
if(c[j]==0)
{
for(i=1; i<=n; i++)
if(ma[i][j]==-1)
ma[i][j]=0;
continue;
}
sum=0;
num=0;
for(i=1; i<=n; i++)
{
if(ma[i][j]==-1)
{
num++;
temp=i;
sum+=min(k,r[i]);
}
}
if(num==1)
{
ma[temp][j]=c[j];
r[temp]-=ma[temp][j];
c[j]-=ma[temp][j];
continue;
}
else if(sum==c[j])
{
for(i=1; i<=n; i++)
{
if(ma[i][j]==-1)
{
ma[i][j]=min(k,r[i]);
r[i]-=ma[i][j];
c[j]-=ma[i][j];
}
}
}
}
}
flag=0;
for(i=1; i<=n; i++)
if(r[i]!=0)
{
flag=1;
break;
}
for(j=1; j<=m; j++)
if(c[j]!=0)
{
flag=1;
break;
}
if(flag==1)
printf("Case #%d: So young!\n",++cas);
else
{
printf("Case #%d: So simple!\n",++cas);
/* for(i=1; i<=n; i++)
{
for(j=1; j<m; j++)
printf("%d ",ma[i][j]);
printf("%d\n",ma[i][m]);
}*/
}
}
return 0;
}

hdu 4975 A simple Gaussian elimination problem.(网络流,推断矩阵是否存在)的更多相关文章

  1. HDU 4975 A simple Gaussian elimination problem.

    A simple Gaussian elimination problem. Time Limit: 1000ms Memory Limit: 65536KB This problem will be ...

  2. hdu - 4975 - A simple Gaussian elimination problem.(最大流量)

    意甲冠军:要在N好M行和列以及列的数字矩阵和,每个元件的尺寸不超过9,询问是否有这样的矩阵,是独一无二的N(1 ≤ N ≤ 500) , M(1 ≤ M ≤ 500). 主题链接:http://acm ...

  3. hdu 4975 A simple Gaussian elimination problem 最大流+找环

    原题链接 http://acm.hdu.edu.cn/showproblem.php?pid=4975 这是一道很裸的最大流,将每个点(i,j)看作是从Ri向Cj的一条容量为9的边,从源点除法连接每个 ...

  4. HDOJ 4975 A simple Gaussian elimination problem.

    和HDOJ4888是一样的问题,最大流推断多解 1.把ISAP卡的根本出不来结果,仅仅能把全为0或者全为满流的给特判掉...... 2.在残量网络中找大于2的圈要用一种类似tarjian的方法从汇点開 ...

  5. A simple Gaussian elimination problem.(hdu4975)网络流+最大流

    A simple Gaussian elimination problem. Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65 ...

  6. hdu4975 A simple Gaussian elimination problem.(正确解法 最大流+删边判环)(Updated 2014-10-16)

    这题标程是错的,网上很多题解也是错的. http://acm.hdu.edu.cn/showproblem.php?pid=4975 2014 Multi-University Training Co ...

  7. A simple Gaussian elimination problem.

    hdu4975:http://acm.hdu.edu.cn/showproblem.php?pid=4975 题意:给你一个n*m的矩阵,矩阵中的元素都是0--9,现在给你这个矩阵的每一行和每一列的和 ...

  8. hdu4975 A simple Gaussian elimination problem.(最大流+判环)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4975 题意:和hdu4888基本一样( http://www.cnblogs.com/a-clown/ ...

  9. hdu 4972 A simple dynamic programming problem(高效)

    pid=4972" target="_blank" style="">题目链接:hdu 4972 A simple dynamic progra ...

随机推荐

  1. HDU 1551 Cable master

    题解:很显然的二分检索,在算法艺术上看过原题,不过这里要注意精度: #include <cstdio> int n,m; ]; bool test(double x){ ,i; ;i< ...

  2. BZOJ 1724: [Usaco2006 Nov]Fence Repair 切割木板

    题目 1724: [Usaco2006 Nov]Fence Repair 切割木板 Time Limit: 5 Sec  Memory Limit: 64 MB Description Farmer ...

  3. POJ 1655 - Balancing Act 树型DP

    这题和POJ 3107 - Godfather异曲同工...http://blog.csdn.net/kk303/article/details/9387251 Program: #include&l ...

  4. CSDN Markdown简明教程3-表格和公式

    0. 文件夹 文件夹 前言 表格 1 表格 2 表格对齐方式 公式 1 行内公式 2 陈列公式displayed formulas 3 MathJax语法 深入 声明 1. 前言 Markdown是一 ...

  5. HTTP协议一次上传多个文件的方法

    如何通过HTTP协议一次上传多个文件呢?在这里有两个思路,是同一个方法的两种实现.具体程序还需自己去设计 1. 在form中设置多个文件输入框,用数组命名他们的名字,如下: < form act ...

  6. 使用JS进行pc端、手机端判断

     <script type="text/javascript">            (function(){                var ua = nav ...

  7. 升级到iis7 的web.config配置

    经典模式或集成模式都识别system.webServers节点 aspnet的isapi分32位和64位 不存在时会报404或403

  8. Objective-C 程序设计第四版

    1,@class  XYPoint; 写在.h文件里,告诉编译器有这类,然后用的时候,其实是在.m文件引入的. 例如.#import “XYPoint.h”  然后在.m文件里就能用XYPoint.h ...

  9. Java疯狂讲义

  10. 启动(Startup)

    Startup Chrome是一个单一的可执行程序.它清楚如何运行其它进程. 下面是chrome启动的概述: 1. 首先,chrome有一个平台相关的入口点:在windows上是wWinMain(): ...