POJ 1631 Bridging signals DP(最长上升子序列)
最近一直在做《挑战程序设计竞赛》的练习题,感觉好多经典的题,都值得记录。
题意:给你t组数据,每组数组有n个数字,求每组的最长上升子序列的长度。
思路:由于n最大为40000,所以n*n的复杂度不够了,会超时。
书上状态方程换成了d[i]——以长度为i+1的上升子序列中末尾元素的最小值。
那么我们在遍历第i个元素时候,以这个元素为末尾元素的最长子序列也就是在d[i]中找到一个小于num[i]的最大值,然后在这个序列末尾加上num[i]
显然,我们在查找时便可以利用二分搜索,从而把复杂度从原来的n变为了logn,总复杂度从n*n变成了nlogn
d[i]已经保证了长度为i+1的上升子序列末尾元素的最小值,那么对于d[i+1]长度为i+2的子序列里面,要获得最长,自然就要从长度为i+1的子序列中,挑选末尾元素为最小的子序列后面添加元素。所以d[i+1] > d[i],d数组是一个递增的数组,所以就能用二分搜索了。
lower_bound(d,d+n,num[i]); //默认数组d为上升数组,返回第一个大于等于num[i]的指针。
lower_bound(d,d+n,num[i],greater<int>()); //表达数组d为下降数组,返回第一个小于等于num[i]的指针。
AC代码:
#include <cstdio>
#include <algorithm>
#include <iostream>
using namespace std;
const int N = 40005;
const int INF = 0X3F3F3F3F;
int n,t,num[N],d[N];
//d[i] = 长度为i+1的上升子序列中末尾元素的最小值,不存在则INF
void solve()
{
for(int i = 0; i < n; i++)
d[i] = INF;
for(int i = 0; i < n; i++)
{
scanf("%d", num+i);
*lower_bound(d,d+n,num[i]) = num[i];
}
printf("%d\n", lower_bound(d,d+n,INF) - d);
}
int main()
{
scanf("%d", &t);
while(t--)
{
scanf("%d", &n);
solve();
}
return 0;
}
POJ 1631 Bridging signals DP(最长上升子序列)的更多相关文章
- POJ - 1631 Bridging signals(最长上升子序列---LIS)
题意:左右各n个端口,已知n组线路,要求切除最少的线路,使剩下的线路各不相交,按照左端口递增的顺序输入. 分析: 1.设左端口为l,右端口为r,因为左端口递增输入,l[i] < l[j](i & ...
- POJ 1631 Bridging signals (LIS:最长上升子序列)
题意:给你一个长为n(n<=40000)的整数序列, 要你求出该序列的最长上升子序列LIS. 思路:要求(nlogn)解法 令g[i]==x表示当前遍历到的长度为i的所有最长上升子序列中的最小序 ...
- poj 1631 Bridging signals (二分||DP||最长递增子序列)
Bridging signals Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9234 Accepted: 5037 ...
- Poj 1631 Bridging signals(二分+DP 解 LIS)
题意:题目很难懂,题意很简单,求最长递增子序列LIS. 分析:本题的最大数据40000,多个case.用基础的O(N^2)动态规划求解是超时,采用O(n*log2n)的二分查找加速的改进型DP后AC了 ...
- OpenJudge/Poj 1631 Bridging signals
1.链接地址: http://poj.org/problem?id=1631 http://bailian.openjudge.cn/practice/1631 2.题目: Bridging sign ...
- POJ 1631 Bridging signals(LIS O(nlogn)算法)
Bridging signals Description 'Oh no, they've done it again', cries the chief designer at the Waferla ...
- POJ 1631 Bridging signals
Bridging signals Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9441 Accepted: 5166 ...
- POJ 1631 Bridging signals & 2533 Longest Ordered Subsequence
两个都是最长上升子序列,所以就放一起了 1631 因为长度为40000,所以要用O(nlogn)的算法,其实就是另用一个数组c来存储当前最长子序列每一位的最小值,然后二分查找当前值在其中的位置:如果当 ...
- POJ 1631 Bridging signals(LIS 二分法 高速方法)
Language: Default Bridging signals Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 1076 ...
随机推荐
- 第26讲 对话框AlertDialog的自定义实现
第26讲对话框AlertDialog的自定义实现 比如我们在开发过长当中,要通过介绍系统发送的一个广播弹出一个dialog.但是dialog必需是基于activity才能呈现出来,如果没有activi ...
- 在Spring aop中的propagation的7种配置的意思
<tx:method name="find*" read-only="true" propagation ="NOT_SUPPORTED&quo ...
- Oracle insert update 时间处理
24小时表示方法:to_date(’ ::’,’yyyy-mm-dd hh24:mi:ss’) 12小时表示方法:to_date(’ ::’,’yyyy-mm-dd hh:mi:ss’) ','S75 ...
- Curl命令使用方法
Curl是Linux下一个很强大的http命令行工具,其功能十分强大.1) 读取网页$ curl http://www.linuxidc.com2) 保存网页$ curl http://www.lin ...
- sqlite创建数据库问题
1.<Sqlite权威指南>上说是这么创建数据库的: sqlite3 test.db 但是我写了这条语句之后出现了下面的情况(注:安装Sqlite过程见 ...) 我的sqlite3放在 ...
- UIActivityIndicatorView活动控制器的大小改变
self.activityView = [[UIActivityIndicatorView alloc]initWithActivityIndicatorStyle:UIActivityIndicat ...
- (转).net开发者对android开发一周的学习体会
春节期间,相对比较闲,上班时也没什么事情做.利用这一周的时间,简单的学习了一下移动方面的开发.主要是针对android,其实我对IOS更感兴趣 (因为我用iphone),苦于暂时没有苹果电脑,只能把它 ...
- 网站发布在另外一个网站下面配置伪静态之后图片样式和JS丢失
<script src="<%=ResolveClientUrl("~/content/js/jquery-1.7.1.min.js") %>" ...
- iOS开发-清理缓存功能的实现
移动应用在处理网络资源时,一般都会做离线缓存处理,其中以图片缓存最为典型,其中很流行的离线缓存框架为SDWebImage. 但是,离线缓存会占用手机存储空间,所以缓存清理功能基本成为资讯.购物.阅读类 ...
- Rect
判断给定的点是否被一个CGRect包含,可以用CGRectContainsPoint函数 BOOL contains = CGRectContainsPoint(CGRect rect, CGPo ...