Numpy 基础运算
numpy的几种运算
1、一维矩阵运算
>>> import numpy as np
>>> a=np.array([10,20,30,40]) # array([10, 20, 30, 40])
>>> b=np.arange(4) # array([0, 1, 2, 3])
>>> c=a-b #两个矩阵的减法
>>> print(c)
[10 19 28 37]
>>> c=a+b #加法
>>> print(c)
[10 21 32 43]
>>> c=a*b #乘法
>>> print(c)
[ 0 20 60 120]
>>> c=b**2 #矩阵的二次方
>>> print(c)
[0 1 4 9]
>>> c=10*np.sin(a) #三角函数,对矩阵中每一项元素进行函数运算
>>> print(c)
[-5.44021111 9.12945251 -9.88031624 7.4511316 ]
>>> print(b<3) #逻辑判断,返回的是一个bool类型的矩阵,即对满足要求的返回True,不满足的返回False。 用"=="表示相等,而不是"="
[ True True True False]
2、多行多维矩阵运算
#多行多维矩阵运算
>>> a=np.array([[1,1],[0,1]])
>>> b=np.arange(4).reshape((2,2))
>>> print(a)
[[1 1]
[0 1]]
>>> print(b)
[[0 1]
[2 3]] >>> c_dot = np.dot(a,b) #标准的矩阵乘法运算,即对应行乘对应列得到相应元素:
>>> print(c_dot)
[[2 4]
[2 3]] >>> c_dot_2 = a.dot(b)#另外的一种关于dot的表示方法
>>> print(c_dot_2)
[[2 4]
[2 3]]
3、sum()、min()、max()的使用
>>> import numpy as np
>>> a=np.random.random((2,4))#随机生成数字,每一元素均是来自从0到1的随机数
>>> print(a)
[[0.44709296 0.39365818 0.8059794 0.12903175]
[0.9441432 0.58932822 0.69222956 0.94534534]] >>> np.sum(a)
4.946808608663762
>>> np.min(a)
0.129031749915261
>>> np.max(a)
0.9453453374741386 >>> print("a =",a)
a = [[0.44709296 0.39365818 0.8059794 0.12903175]
[0.9441432 0.58932822 0.69222956 0.94534534]]
>>> print("sum =",np.sum(a,axis=1))# 当axis的值为0的时候,将会以列作为查找单元, 当axis的值为1的时候,将会以行作为查找单元。
sum = [1.77576229 3.17104632]
>>> print("min =",np.min(a,axis=0))
min = [0.44709296 0.39365818 0.69222956 0.12903175]
>>> print("max =",np.max(a,axis=1))
max = [0.8059794 0.94534534]
4、对应元素的索引
>>> import numpy as np
>>> A = np.arange(2,14).reshape((3,4))
>>> print(np.argmin(A))#argmin() 求矩阵中最小元素的索引
0
>>> print(np.argmax(A))#argmax() 求矩阵中最大元素的索引
11 >>> print(np.mean(A))#将整个矩阵的均值求出来
7.5
>>> print(np.average(A))
7.5
>>> print(A.mean())#另一种求均值的写法
7.5 >>> print(np.median(A))#求中位数
7.5 >>> print(np.cumsum(A))#累加,生成的每一项矩阵元素均是从原矩阵首项累加到对应项的元素之和
[ 2 5 9 14 20 27 35 44 54 65 77 90] >>> print(np.diff(A))#累差运算,计算每一行中后一项与前一项之差。故一个3行4列矩阵通过函数计算得到的矩阵便是3行3列的矩阵。
[[1 1 1]
[1 1 1]
[1 1 1]]
5、nonzero()函数
这个函数将所有非零元素的行与列坐标分割开,重构成两个分别关于行和列的矩阵。
>>> print(np.nonzero(A))
(array([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2], dtype=int64), array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3], dtype=int64))
6、clip()函数
这个函数的格式是clip(Array,Array_min,Array_max),顾名思义,Array指的是将要被执行用的矩阵,而后面的最小值最大值则用于让函数判断矩阵中元素是否有比最小值小的或者比最大值大的元素,并将这些指定的元素转换为最小值或者最大值。
>>> print(A)
[[14 13 12 11]
[10 9 8 7]
[ 6 5 4 3]]
>>> print(np.clip(A,5,9))
[[9 9 9 9]
[9 9 8 7]
[6 5 5 5]]
7、排序、转置
>>> import numpy as np
>>> A = np.arange(14,2, -1).reshape((3,4))
>>> print(np.sort(A))#从小到大排序
[[11 12 13 14]
[ 7 8 9 10]
[ 3 4 5 6]] >>> print(np.transpose(A))#两种转置方法
[[14 10 6]
[13 9 5]
[12 8 4]
[11 7 3]]
>>> print(A.T)
[[14 10 6]
[13 9 5]
[12 8 4]
[11 7 3]]
Numpy 基础运算的更多相关文章
- Numpy 基础运算2
# -*- encoding:utf-8 -*- # Copyright (c) 2015 Shiye Inc. # All rights reserved. # # Author: ldq < ...
- Numpy 基础运算1
# -*- encoding:utf-8 -*- # Copyright (c) 2015 Shiye Inc. # All rights reserved. # # Author: ldq < ...
- numpy的基础运算2-【老鱼学numpy】
numpy的基础运算中还有很多运算,我们这里再记录一些. 最小/大值索引 前面一篇博文中我们讲述过如何获得数组中的最小值,这里我们获得最小/大值的索引值,也就是这个最小/大值在整个数组中位于第几位. ...
- 利用Python进行数据分析(5) NumPy基础: ndarray索引和切片
概念理解 索引即通过一个无符号整数值获取数组里的值. 切片即对数组里某个片段的描述. 一维数组 一维数组的索引 一维数组的索引和Python列表的功能类似: 一维数组的切片 一维数组的切片语法格式为a ...
- 《利用python进行数据分析》读书笔记--第四章 numpy基础:数组和矢量计算
http://www.cnblogs.com/batteryhp/p/5000104.html 第四章 Numpy基础:数组和矢量计算 第一部分:numpy的ndarray:一种多维数组对象 实话说, ...
- 利用Python进行数据分析——Numpy基础:数组和矢量计算
利用Python进行数据分析--Numpy基础:数组和矢量计算 ndarry,一个具有矢量运算和复杂广播能力快速节省空间的多维数组 对整组数据进行快速运算的标准数学函数,无需for-loop 用于读写 ...
- numpy 基础操作
Numpy 基础操作¶ 以numpy的基本数据例子来学习numpy基本数据处理方法 主要内容有: 创建数组 数组维度转换 数据选区和切片 数组数据计算 随机数 数据合并 数据统计计算 In [1]: ...
- Numpy 基础
Numpy 基础 参考https://www.jianshu.com/p/83c8ef18a1e8 import numpy as np 简单创建数组 # 创建简单列表 a = [1, 2, 3, 4 ...
- [转]python与numpy基础
来源于:https://github.com/HanXiaoyang/python-and-numpy-tutorial/blob/master/python-numpy-tutorial.ipynb ...
随机推荐
- 解决:python 连接Oracle 11g 报错:ORA-12514: TNS: 监听程序当前无法识别连接描述符中请求的服务
其次,将查询到的service_name替换sid即可:conn=cx_Oracle.connect('hr/admin@localhost:1521/EE.oracle.docker')
- hdu2669-Romantic-(扩展欧几里得定理)
Romantic Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- python 2.0 与 python 3.0 区别
区别一: python 2.0 : 源码不规范,重复代码很多 python 3.0 : 源码精简,美观.优雅 区别二: PY2 : 有整型int.长整型long. py3:只有整型 ...
- Java方法的重载和重写
重载与重写对比: 重载: 权限修饰符(public private 默认):无关 方法名:重载的两个方法的方法名必须相同 形参的个数不同 形参的类型不同 三者至少满足一个 返回值类型: 重载与返回值 ...
- Hibernate一对多单向关联和双向关联映射方法及其优缺点 (待续)
一对多关联映射和多对一关联映射实现的基本原理都是一样的,既是在多的一端加入一个外键指向一的一端外键,而主要的区别就是维护端不同.它们的区别在于维护的关系不同: 一对多关联映射是指在加载一的一端数据的同 ...
- django1.10使用本地静态文件
django1.10使用本地静态文件方法 本文介绍的静态文件使用,是指启动web站点后,访问静态资源的用法,实际静态资源地址就是一个个的url 如果没有启动web站点,只是本地调试html页面,那直接 ...
- Pandas基本功能之算术运算、排序和排名
算术运算和数据对齐 Series和DataFrame中行运算和列运算有种特征叫做广播 在将对象相加时,如果存在不同的索引对,则结果的索引就是该索引对的并集.自动的数据对齐操作在不重叠的索引处引入了NA ...
- H5前端框架推荐合集 (转)
Ionic ionic 吧开发流程都帮你做好了,已经不再是单纯的UI框架,而是开发框架了,非常适合快速开发.基于angular2,丰富的UI组件,大大改进的编程模型, Semantic UI 中文官网 ...
- Python程序打包—pyinstaller
简介:PyInstaller是一个十分有用的第三方库,通过对源文件打包,Python程序可以在没有安装 Python的环境中运行,也可以作为一个独立文件方便传递和管理. PyInstaller的官方网 ...
- 第二章 向量(a)接口与实现