P2513 [HAOI2009]逆序对数列
P2513 [HAOI2009]逆序对数列
题目描述
对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数。若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数。那么逆序对数为k的这样自然数数列到底有多少个?
错误日志: 没想対, 菜是原罪, 最近状态不佳
Solution
在一段 \(1 - (i - 1)\) 的排列中加入 \(i\) 你可以控制 \(i\) 插入的位置, 给这个排列的逆序对任意加上 \(1 - (i - 1)\) 对(从最右到最左插入)
于是想到状态 \(dp[i][j]\) 表示为考虑 \(1 - i\) 的排列, 逆序对数为 \(j\) 的方案数
然后写出状态转移方程:$$dp[i][j] = \sum_{k = 0}^{min(j, i - 1)}dp[i - 1][j - k]$$
这样枚举 \(k\), 复杂度为 \(O(nk^{2})\) 会炸
观察这个式子, 令 \(t = j - k\) ,换一下元, 交换 \(sum\) 的上下边界, 我们可以得到:$$dp[i][j] = \sum_{t = max(0, j - i +1)}^{j}dp[i - 1][t]$$
发现 \(t\) 的范围为一段可以维护和的区间, 前缀和维护即可
Code
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#include<climits>
#define LL long long
#define REP(i, x, y) for(int i = (x);i <= (y);i++)
using namespace std;
int RD(){
int out = 0,flag = 1;char c = getchar();
while(c < '0' || c >'9'){if(c == '-')flag = -1;c = getchar();}
while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();}
return flag * out;
}
const int maxn = 2019, M = 10000;
int num, K;
int dp[maxn][maxn];
int main(){
num = RD(), K = RD();
dp[1][0] = 1;
REP(i, 2, num){
int sum = 0;
REP(j, 0, K){
sum = (sum + dp[i - 1][j]) % M;
if(j - i + 1 > 0)sum = (sum - dp[i - 1][j - i] + M) % M;
dp[i][j] = sum;
}
}
printf("%d\n", dp[num][K]);
return 0;
}
P2513 [HAOI2009]逆序对数列的更多相关文章
- 洛谷P2513 [HAOI2009]逆序对数列
P2513 [HAOI2009]逆序对数列 题目描述 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易 ...
- [题解] P2513 [HAOI2009]逆序对数列
动态规划,卡常数 题目地址 设\(F[X][Y]\)代表长度为\(X\)的序列,存在\(Y\)组逆序对的方案数量. 考虑\(F[X][i]\)向\(F[X+1][i]\)转移: 把数字\(X+1\)添 ...
- bzoj2431:[HAOI2009]逆序对数列
单组数据比51nod的那道题还弱...而且连优化都不用了.. #include<cstdio> #include<cstring> #include<cctype> ...
- BZOJ 2431: [HAOI2009]逆序对数列( dp )
dp(i,j)表示1~i的全部排列中逆序对数为j的个数. 从1~i-1的全部排列中加入i, 那么可以产生的逆序对数为0~i-1, 所以 dp(i,j) = Σ dp(i-1,k) (j-i+1 ≤ k ...
- 2431: [HAOI2009]逆序对数列
2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 954 Solved: 548[Submit][Status ...
- bzoj千题计划153:bzoj2431: [HAOI2009]逆序对数列
http://www.lydsy.com/JudgeOnline/problem.php?id=2431 dp[i][j] 表示i的排列,有j个逆序对的方案数 加入i+1,此时i+1是排列中最大的数, ...
- BZOJ2431 HAOI2009 逆序对数列 【DP】*
BZOJ2431 HAOI2009 逆序对数列 Description 对于一个数列ai{a_i}ai,如果有i<j且ai>aja_i>a_jai>aj,那么我们称aia ...
- bzoj2431: [HAOI2009]逆序对数列(前缀和优化dp)
2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 2312 Solved: 1330[Submit][Stat ...
- 题解【洛谷P2513/CJOJ1345】[HAOI2009]逆序对数列
P1345 - [HAOI2009]逆序对数列 Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成 ...
随机推荐
- centos 6.5 搭建开源堡垒机 Teleport 遇到的问题解决
几款开源的堡垒机 下面进行 teleport 的安装: https://docs.tp4a.com/install/#11 异常1:libc.so.6: version `GLIBC_2.14' no ...
- 【Orleans开胃菜系列1】不要被表象迷惑
[Orleans开胃菜系列1]不要被表象迷惑 /** * prism.js Github theme based on GitHub's theme. * @author Sam Clarke */ ...
- 一个Python开源项目-哈勃沙箱源码剖析(下)
前言 在上一篇中,我们讲解了哈勃沙箱的技术点,详细分析了静态检测和动态检测的流程.本篇接着对动态检测的关键技术点进行分析,包括strace,sysdig,volatility.volatility的介 ...
- 0.1 Maven相关知识(项目开发基础)
一.Maven 1.1Maven是什么 Maven项目对象模型(POM),可以通过一小段描述信息来管理项目的构建,报告和文档的项目管理工具软件. Maven这个单词来自于意第绪语(犹太语),意为知识的 ...
- GitHub笔记(一)——本地库基础操作
零.基础概念理解——可以访问廖雪峰老师的网站https://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c01 ...
- Linux内核分析作业 NO.2
操作系统是如何工作的 于佳心 原创作品转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 ...
- Day Ten
站立式会议 站立式会议内容总结 331 今天:话题单选对话框 遇到问题:无 442 今天:数据库交互,解决timepicker问题 遇到的问题:无 439 今天:测试模块功能 遇到问题:无 会议照片 ...
- PAT----1001. A+B Format (20)解题过程
1001. A+B Format (20) github链接 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B Calculate a + b and output t ...
- extjs几个奇怪的错误
在用Extjs进行网页开发的时候,遇见了一下两个错误,这两个错误的位置用firebug调试显示在extjs-all.js Ext.resetElement is undefined g.el is n ...
- Java编写准备数据源
1.装饰设计模式 package com.itheima.ds; import java.sql.Array; import java.sql.Blob; import java.sql.Callab ...