P2513 [HAOI2009]逆序对数列
P2513 [HAOI2009]逆序对数列
题目描述
对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数。若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数。那么逆序对数为k的这样自然数数列到底有多少个?
错误日志: 没想対, 菜是原罪, 最近状态不佳
Solution
在一段 \(1 - (i - 1)\) 的排列中加入 \(i\) 你可以控制 \(i\) 插入的位置, 给这个排列的逆序对任意加上 \(1 - (i - 1)\) 对(从最右到最左插入)
于是想到状态 \(dp[i][j]\) 表示为考虑 \(1 - i\) 的排列, 逆序对数为 \(j\) 的方案数
然后写出状态转移方程:$$dp[i][j] = \sum_{k = 0}^{min(j, i - 1)}dp[i - 1][j - k]$$
这样枚举 \(k\), 复杂度为 \(O(nk^{2})\) 会炸
观察这个式子, 令 \(t = j - k\) ,换一下元, 交换 \(sum\) 的上下边界, 我们可以得到:$$dp[i][j] = \sum_{t = max(0, j - i +1)}^{j}dp[i - 1][t]$$
发现 \(t\) 的范围为一段可以维护和的区间, 前缀和维护即可
Code
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#include<climits>
#define LL long long
#define REP(i, x, y) for(int i = (x);i <= (y);i++)
using namespace std;
int RD(){
int out = 0,flag = 1;char c = getchar();
while(c < '0' || c >'9'){if(c == '-')flag = -1;c = getchar();}
while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();}
return flag * out;
}
const int maxn = 2019, M = 10000;
int num, K;
int dp[maxn][maxn];
int main(){
num = RD(), K = RD();
dp[1][0] = 1;
REP(i, 2, num){
int sum = 0;
REP(j, 0, K){
sum = (sum + dp[i - 1][j]) % M;
if(j - i + 1 > 0)sum = (sum - dp[i - 1][j - i] + M) % M;
dp[i][j] = sum;
}
}
printf("%d\n", dp[num][K]);
return 0;
}
P2513 [HAOI2009]逆序对数列的更多相关文章
- 洛谷P2513 [HAOI2009]逆序对数列
P2513 [HAOI2009]逆序对数列 题目描述 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易 ...
- [题解] P2513 [HAOI2009]逆序对数列
动态规划,卡常数 题目地址 设\(F[X][Y]\)代表长度为\(X\)的序列,存在\(Y\)组逆序对的方案数量. 考虑\(F[X][i]\)向\(F[X+1][i]\)转移: 把数字\(X+1\)添 ...
- bzoj2431:[HAOI2009]逆序对数列
单组数据比51nod的那道题还弱...而且连优化都不用了.. #include<cstdio> #include<cstring> #include<cctype> ...
- BZOJ 2431: [HAOI2009]逆序对数列( dp )
dp(i,j)表示1~i的全部排列中逆序对数为j的个数. 从1~i-1的全部排列中加入i, 那么可以产生的逆序对数为0~i-1, 所以 dp(i,j) = Σ dp(i-1,k) (j-i+1 ≤ k ...
- 2431: [HAOI2009]逆序对数列
2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 954 Solved: 548[Submit][Status ...
- bzoj千题计划153:bzoj2431: [HAOI2009]逆序对数列
http://www.lydsy.com/JudgeOnline/problem.php?id=2431 dp[i][j] 表示i的排列,有j个逆序对的方案数 加入i+1,此时i+1是排列中最大的数, ...
- BZOJ2431 HAOI2009 逆序对数列 【DP】*
BZOJ2431 HAOI2009 逆序对数列 Description 对于一个数列ai{a_i}ai,如果有i<j且ai>aja_i>a_jai>aj,那么我们称aia ...
- bzoj2431: [HAOI2009]逆序对数列(前缀和优化dp)
2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 2312 Solved: 1330[Submit][Stat ...
- 题解【洛谷P2513/CJOJ1345】[HAOI2009]逆序对数列
P1345 - [HAOI2009]逆序对数列 Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成 ...
随机推荐
- Mysql + Mybatis动态建表
service层业务 package com.zx.common.service.impl; import com.zx.common.entity.SysUser; import com.zx.co ...
- JavaScript快速入门-ECMAScript本地对象(String)
一.String对象 String对象和python中的字符串一样,也有很多方法,这些方法大概分为以下种类: 1.索引和查找 1.charAt() 返回指定位置的字符. 2.charCodeAt( ...
- PowerShell 操作 Azure SQL Active Geo-Replication
前文中我们比较全面的介绍了 Azure SQL Database Active Geo-Replication 的主要特点和优势.接下来我们将从自动化的角度介绍如何通过 PowerShell 在项目中 ...
- Mac 上flink的安装与启动
在Mac 上安装flink,需要通过Homebrew安装的 1.howmebrew的安装方式,在终端粘贴以下命令,或者去官网https://brew.sh/index_zh-cn 找到此代码复制粘贴到 ...
- 腾讯 深圳 25928-PHP开发工程师(深圳)
工作地点:深圳 职位类别:技术类 招聘人数:1人 工作职责: 负责游戏研运体系流程工具及相关产品的开发.维护: 参与支撑系统的需求分析.设计.编码: 承担外包开发成员技术导师,解决技术难点,把控开发质 ...
- Linux内核分析——第四周学习笔记20135308
第四周 扒开系统调用的“三层皮” 一.内核.用户态和中断 (一)如何区分用户态.内核态 1.一般现在的CPU有几种不同的指令执行级别 ①在高级别的状态下,代码可以执行特权指令,访问任意的物理地址,这种 ...
- Python爬虫爬中文却显示Unicode,怎样显示中文--问题解答
首先爬取古诗网站时,显示 原因是因为输出为列表[] 如果写一个循环,输出其中每个元素就为中文了...
- String基础
一: String,StringBuffer与StringBuilder的区别??String 字符串常量StringBuffer 字符串变量(线程安全)StringBuilder 字符串变量(非线程 ...
- Daily Scrum - 11/20
好习惯的养成需要两个星期. ——砖家 今天我们小组又进行了一次愉快的例会,可以看到daily scrum在我们小组已经逐渐变成了每日的好习惯.首先对以下一些团队routine达成了共识: 1.spri ...
- Java实现模拟登录新浪微博
毕设题目要使用到新浪微博数据,所以要爬取新浪微博的数据.一般而言,新浪微博的爬虫有两种模式:新浪官方API和模拟登录新浪微博.两种方法的异同点和适用情况就无须赘述了.前辈的文章已经非常多了.写这篇文章 ...