hdu 6073
题意: 给出一个二部图,U、V分别是二部图的两个点集,其中,U中每个点会有两条边连到V中两个不同的点。
完美匹配定义为:所有点都成功匹配。
思路:已知一定是完美匹配了呀(也一定存在),我们先把度数为一的匹配了(用拓扑把度数为一的找出来),那么剩下的图中左右各有m个点,每个点度数都不小于2,且左边每个点度数都是2,而右侧总度数是2m,因此右侧只能是每个点度数都是2。这说明这个图每个连通块是个环,在环上间隔着取即可,一共两种方案。
然后就完了(还是看了别人的才懂得ε=ε=ε=┏(゜ロ゜;)┛)。
/* gyt
Live up to every day */
#include<cstdio>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<vector>
#include<stack>
#include<cstring>
#include<queue>
#include<set>
#include<string>
#include<map>
#include <time.h>
#define PI acos(-1)
using namespace std;
typedef long long ll;
typedef double db;
const int maxn = 6e5+;
const int maxm=+;
const ll mod = ;
const int INF = 0x3f3f3f;
const db eps = 1e-;
struct node {
ll w;
int v, next;
}edge[maxn<<];
int no, head[maxn];
int bad[maxn], deg[maxn], vis[maxn];
int n, nn;
queue<int>q;
vector<int>vtt;
ll ans, must; void init() {
no=;
memset(vis, , sizeof(vis));
memset(head, -, sizeof(head));
memset(bad, , sizeof(bad));
memset(deg, , sizeof(deg));
}
void add(int u, int v, int w) {
edge[no].v=v; edge[no].next=head[u];
edge[no].w=w; head[u]=no++;
}
ll dfs(int cur, int father) {
vtt.push_back(cur);
vis[cur] = ;
for(int k = head[cur], kk; k != -; k = edge[k].next) {
int v = edge[k].v;
if(v == father) continue;
if(bad[v] || vis[v]) continue;
vis[v] = ; vtt.push_back(v);
for(kk = head[v]; kk != -; kk = edge[kk].next) {
if(!bad[edge[kk].v] && edge[kk].w != cur)
break;
}
return dfs(edge[kk].v, v)*edge[k].w%mod;
}
return ;
}
void solve() {
init(); scanf("%d", &n);
nn=n*;
for (int i=; i<=n; i++) {
int v, w; scanf("%d%d", &v, &w);
add(i, n+v, w); add(n+v, i, w);
deg[i]++, deg[n+v]++;
scanf("%d%d", &v, &w);
add(i, n+v, w); add(n+v, i, w);
deg[i]++, deg[n+v]++;
}
must=;
while(!q.empty()) q.pop();
for (int i=; i<=n; i++) {
if (deg[n+i]==) q.push(n+i); //把度数为一的提出来
}
while(!q.empty()) {
int u=q.front(); q.pop();
bad[u]=;
for (int k=head[u]; ~k; k=edge[k].next) { //找到度数为一的点连的另一个点a
int v=edge[k].v;
if (bad[v]) continue;
must=must*edge[k].w%mod;
bad[v]=;
for (int kk=head[v]; ~kk; kk=edge[kk].next) {//把a相连的点找出来,如果减掉1还是1,说明他能匹配的也只能是一个
if (bad[edge[kk].v]) continue;if (--deg[edge[kk].v]==) {
q.push(edge[kk].v);
}
}
}
}
ans=must;
//cout<<ans<<endl;
for (int i=; i<=n; i++) {
if (vis[i]||bad[i]) continue;
ll ans1=;
for(int k = head[i], kk; k != -; k = edge[k].next) {//分别两种匹配的结果
int v=edge[k].v;
vtt.clear();
vis[v]=;
for ( kk=head[v]; ~kk; kk=edge[kk].next) {
if (!bad[edge[kk].v] && edge[kk].v!=i) break;
}
ans1=(ans1+dfs(edge[kk].v, v)*edge[k].w%mod)%mod;
// cout<<ans1<<endl;
vis[v]=;
for (int j=; j<vtt.size(); j++) {
vis[vtt[j]]=;
}
vtt.push_back(v);
}
for (int j=; j<vtt.size(); j++) {
vis[vtt[j]]=;
}
ans = ans*ans1%mod;
}
printf("%lld\n", ans);
}
int main() {
int t = ;
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
scanf("%d", &t);
while(t--)
solve();
return ;
}
hdu 6073的更多相关文章
- HDU 6073 - Matching In Multiplication | 2017 Multi-University Training Contest 4
/* HDU 6073 - Matching In Multiplication [ 图论 ] | 2017 Multi-University Training Contest 4 题意: 定义一张二 ...
- HDU 6073 Matching In Multiplication(拓扑排序+思维)
http://acm.hdu.edu.cn/showproblem.php?pid=6073 题意:有个二分图,左边和右边的顶点数相同,左边的顶点每个顶点度数为2.现在有个屌丝理解错了最佳完美匹配,它 ...
- 2017 ACM暑期多校联合训练 - Team 4 1007 HDU 6073 Matching In Multiplication (模拟)
题目链接 Problem Description In the mathematical discipline of graph theory, a bipartite graph is a grap ...
- HDU 6073 Matching In Multiplication(拓扑排序)
Matching In Multiplication Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 524288/524288 K ( ...
- HDU 6073 Matching In Multiplication dfs遍历环 + 拓扑
Matching In Multiplication Problem DescriptionIn the mathematical discipline of graph theory, a bipa ...
- HDU 6073 Matching In Multiplication —— 2017 Multi-University Training 4
Matching In Multiplication Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 524288/524288 K ( ...
- hdu some problems in Multi-University Training Contest
hdu 6103 Kirinriki #include<bits/stdc++.h> using namespace std; int n,m,ans; ]; void doit(int ...
- HDOJ 2111. Saving HDU 贪心 结构体排序
Saving HDU Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total ...
- 【HDU 3037】Saving Beans Lucas定理模板
http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...
随机推荐
- 六 json&pickle模块
之前我们学习过用eval内置方法可以将一个字符串转成python对象,不过,eval方法是有局限性的,对于普通的数据类型,json.loads和eval都能用,但遇到特殊类型的时候,eval就不管用了 ...
- 超详细 Nginx 极简教程
什么是Nginx? Nginx (engine x) 是一款轻量级的Web 服务器 .反向代理服务器及电子邮件(IMAP/POP3)代理服务器. 什么是反向代理? 反向代理(Reverse Proxy ...
- LibreOJ 6280 . 数列分块入门 4
题目链接:https://loj.ac/problem/6280 加一个数组保存块的和. 代码: #include<iostream> #include<cstring> #i ...
- linux下面redis安装
安装方法1redis1.下载安装包2.解压程序包tar -zxvf redis-3.2.6.tar.gz3.编译源程序make(编译失败,查看是否安装gcc 如果没有yum install gc ...
- Unity游戏设计与实现 南梦宫一线程序员的开发实例
图灵程序设计丛书 Unity游戏设计与实现:南梦宫一线程序员的开发实例(修订版) 加藤政树 (作者) 罗水东 (译者) c# 游戏 unity <内容提要>本书的作者是日本知 ...
- 微信小程序开发——小程序分享转发
关于小程序的转发: 最简单的就是点击小程序右上角菜单“转发”按钮直接分享,不过这种分享有点不太友好,实用性也不强. 当然,你可以自定义分享内容,包括标题,简介,图片及分享的小程序页面路径. 再高级一点 ...
- Wannafly挑战赛14 C.可达性(tarjan缩点)
题目描述 给出一个 0 ≤ N ≤ 105 点数.0 ≤ M ≤ 105 边数的有向图, 输出一个尽可能小的点集,使得从这些点出发能够到达任意一点,如果有多个这样的集合,输出这些集合升序排序后字典序最 ...
- 《centos系列》ubuntu终端链接centos服务器
首先你得知道centos的账户密码:如果你不知道可以直接在centos下使用root用户: passwd 用户名 直接更新用户的密码. 然后在ubuntu终端(前提是已经安装了ssh): ssh ad ...
- swift 带有下划线的UIbutton
import UIKit /// 带下划线的Button class UnderlineButton: JYBaseButton { /// 下划线高度 var underLineHeight:CGF ...
- js 变量大小写
js对变量是区分大小写的.完毕.