传送门

跟上一道题差不多。

考虑如果环上点的个数跟最短路长度有单调性那么可以直接上倍增+floyd。

然而并没有什么单调性。

于是我们最开始给每个点初始化一个长度为0的自环,于是就有单调性了。

代码:

#pragma GCC optimize(2)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
inline ll read(){
	ll ans=0;
	char ch=getchar();
	while(!isdigit(ch))ch=getchar();
	while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
	return ans;
}
const int N=105;
int n;
ll m,val;
struct Matrix{
	ll a[N][N];
	inline void init(){memset(a,-1,sizeof(a));}
	friend inline Matrix operator*(const Matrix&a,const Matrix&b){
		Matrix ret;
		ret.init();
		for(register int i=1;i<=n;++i)for(register int k=1;k<=n;++k)if(~a.a[i][k])for(register int j=1;j<=n;++j)if(~b.a[k][j])ret.a[i][j]=max(ret.a[i][j],a.a[i][k]+b.a[k][j]);
		for(register int i=1;i<=n;++i)for(register int j=1;j<=n;++j)if(ret.a[i][j]>m)ret.a[i][j]=m;
		return ret;
	}
	inline bool check(){for(register int i=1;i<=n;++i)if(a[1][i]==m)return 1;return 0;}
}dis[105],mul,tmp;
int main(){
	for(register int tt=read();tt;--tt){
		n=read(),m=read();
		for(register int i=1;i<=n;++i)for(register int j=1;j<=n;++j){
			dis[0].a[i][j]=read();
			if(!dis[0].a[i][j])--dis[0].a[i][j];
		}
		int up=0;
		for(;;++up){
			dis[up+1]=dis[up]*dis[up];
			if(dis[up+1].check())break;
		}
		mul=dis[0];
		ll ans=1ll;
		for(register int i=up;~i;--i){
			tmp=mul*dis[i];
			if(!tmp.check()){
				for(register int j=1;j<=n;++j)for(register int k=1;k<=n;++k)mul.a[j][k]=tmp.a[j][k];
				ans+=1ll<<i;
			}
		}
		cout<<ans+1ll<<'\n';
	}
	return 0;
}

2018.11.09 bzoj4773: 负环(倍增+floyd)的更多相关文章

  1. BZOJ4773: 负环(倍增Floyd)

    题意 题目链接 Sol 倍增Floyd,妙妙喵 一个很显然的思路(然而我想不到是用\(f[k][i][j]\)表示从\(i\)号点出发,走\(k\)步到\(j\)的最小值 但是这样复杂度是\(O(n^ ...

  2. 2018.11.09 bzoj2165: 大楼(倍增+floyd)

    传送门 先倍增出iii使得2i2^i2i时间时刚好有每个点能够到mmm层及以上. 然后就可以用floyd+floyd+floyd+倍增求出刚好不超过mmm层的时间,最后再补一层就行了. 代码: #pr ...

  3. 【BZOJ4773】负环 倍增Floyd

    [BZOJ4773]负环 Description 在忘记考虑负环之后,黎瑟的算法又出错了.对于边带权的有向图 G = (V, E),请找出一个点数最小的环,使得 环上的边权和为负数.保证图中不包含重边 ...

  4. BZOJ4773 负环(floyd+倍增)

    倍增floyd求出经过<=2k条边时两点间最短路,一个点到自身的最短路就是包含该点的最小环.然后倍增找答案即可.注意初始时到自身的最短路设为0,这样求出的最短路就是经过<=2k条边的而不是 ...

  5. bzoj4773 负环 倍增+矩阵

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4773 题解 最小的负环的长度,等价于最小的 \(len\) 使得存在一条从点 \(i\) 到自 ...

  6. BZOJ 4773: 负环 倍增Floyd

    现在看来这道题就非常好理解了. 可以将问题转化为求两点间经过 $k$ 个点的路径最小值,然后枚举剩余的那一个点即可. #include <cstdio> #include <cstr ...

  7. 2018.11.09 bzoj1706: relays 奶牛接力跑(倍增+floyd)

    传送门 倍增+floyd板子题. 先列出状态fi,j,kf_{i,j,k}fi,j,k​表示经过iii条边从jjj到kkk的最短路. 然后发现可以用fi−1,j,kf_{i-1,j,k}fi−1,j, ...

  8. bzoj4773: 负环(倍增floyd)

    浴谷夏令营例题...讲师讲的很清楚,没看题解代码就自己敲出来了 f[l][i][j]表示i到j走2^l条边的最短距离,显然有f[l][i][j]=min(f[l][i][j],f[l-1][i][k] ...

  9. bzoj 4773: 负环——倍增

    Description 在忘记考虑负环之后,黎瑟的算法又出错了.对于边带权的有向图 G = (V, E),请找出一个点数最小的环,使得 环上的边权和为负数.保证图中不包含重边和自环. Input 第1 ...

随机推荐

  1. POJ-2386.Lakecounting(DFS求连通块)

    本题是一道连通块的入门题,用来练手,后续还会更新连通块的题目. 本题大意:一个n * m 的陆地上面有很多水洼,让你统计水洼的个数并输出. 本题思路:按照顺序遍历陆地,如果发现水洼就将它的八连块都进行 ...

  2. Shell教程 之echo命令

    1.显示普通字符串 这里的双引号完全可以省略,以下命令效果一致: echo "传递参数实例!" echo 传递参数实例! 2.显示转义字符 echo "\"传递 ...

  3. JavaScript各种继承方式(四):原型式继承(prototypal inheritance)

    一 原理 利用工具函数,通过原型对象直接得到父类的实例,并当作子类对实例使用. function inherit(obj){ // 在闭包中创建子类,对外隐藏子类 function Temp(){ } ...

  4. IOS是否存在32位和64位版本的区分

    苹果于2013年9月推出了iPhone 5S新手机,采用的全新A7处理器其最大特色就是支持64位运算.其64位A7处理器的使用意味着iPhone性能会大有提高,性能和速度更加出色:而要到达到这样的性能 ...

  5. iPhone X系列 的获取 - 安全区顶部和底部高度

    ///1. 获得当前窗口 var JY_WINDOW: UIWindow? { get{ if let app = UIApplication.shared.delegate as? AppDeleg ...

  6. 整站变灰CSS代码

    * { filter:progid:DXImageTransform.Microsoft.BasicImage(grayscale=1); -webkit-filter: grayscale(100% ...

  7. Beyound Compare中比较java字节码class文件

    背景 项目维护的时候版本混乱或者外出在现场项目排错的时候难免要比对两个jar/class/war文件的源代码. 通常情况下这个时候我们用jd-gui直接把文件拖进去比对,这种情况只适合单一文件的比对. ...

  8. Spring Boot 2.0(一):Spring Boot 2.0尝鲜-动态 Banner

    Spring Boot 2.0 提供了很多新特性,其中就有一个小彩蛋:动态 Banner,今天我们就先拿这个来尝尝鲜 Spring Boot 更换 Banner 我们先来回顾一下在 Spring Bo ...

  9. Spring MVC 注解类型

    Spring 2.5 引入了注解 基于注解的控制器的优势 1. 一个控制器类可以处理多个动作,而一个实现了 Controller 接口的控制器只能处理一个动作 2. 基于注解的控制器的请求映射不需要存 ...

  10. Eclipse快速生成覆盖方法、Getter、Setter的方法

    点击鼠标右键 --> Source --> 直接使用快捷键 Alt+Shift+s