[SDOI2011]消耗战(虚树+树形动规)
虚树dp
虚树的主要思想:
- 不遍历没用的的节点以及没用的子树,从而使复杂度降低到\(\sum\limits k\)(k为询问的节点的总数)。
所以怎么办:
- 只把询问节点和其LCA放入询问的数组中。
1、建虚树
q.clear();
int m;
scanf("%d",&m);
for(int i=1;i<=m;++i){
int x;
scanf("%d",&x);
v[x]=1;
q.push_back(x);
}
sort(q.begin(),q.end(),cmp);
for(int i=0;i<m-1;++i){
q.push_back(LCA(q[i],q[i+1]));
}
q.push_back(1);
sort(q.begin(),q.end());
q.erase(unique(q.begin(),q.end()),q.end());
sort(q.begin(),q.end(),cmp);
q是一个vector,我们开始先对所有节点按欧拉序(即深度优先搜索是访问的顺序)排序,然后对每两个相邻的节点将LCA放入q中(可知这样一定会将所有有效节点放入q中)。然后一波去重,再按欧拉序排序即可。
如果你还不会LCA的话请到这里
2.遍历虚树
然后我们得到了一个遍历表,向深度优先搜索一样搜一遍即可。
这里要注意每个节点x只有当他下一个节点y是他的子节点时(即\(dfn[x]+size[x]>=dfn[y]\)时,其中\(dfn\)为欧拉序,\(size\)为子树大小)才访问下一个节点,并用下一个点的信息更新当前节点。
对于两点间的最短树边,我们可以用倍增来寻找(当然也可以用st表\(O(1)\)求,但这题并不要求)。
long long getmin(int x,int lca){
int ret=1e18;
for(int i=t-1;~i;--i){
if(dep[x]-(1<<i)>=dep[lca]){
ret=min(ret,c[x][i]);
x=fa[x][i];
}
}
return ret;
}
3.树型DP
对于每个节点,如果他一定要被割掉,则当前点的最小花费为当前点到父亲节点的最小树边,否则为所有子节点的最小花费和和当前点到父亲节点的最小树边的最小值。
void dfs1(){
int x=q[it];
long long ret=0;
while(1){
if(it+1==q.size())break;
if(dfn[q[it+1]]<=dfn[x]+sz[x]-1){
int y=q[++it];
if(v[y]==1){
dfs1();
dp[y]=getmin(y,x);
}
else dp[y]=1e18,dfs1(),dp[y]=min(dp[y],getmin(y,x));
ret+=dp[y];
}else break;
}
if(ret)dp[x]=min(dp[x],ret);
}
代码中的it为当前访问到的节点在q中的编号
然后就可以写出代码了,需要注意一些初始化的细节:
#include<bits/stdc++.h>
using namespace std;
const int N=600010,t=20;
int n;
int tot,bian[N<<1],nxt[N<<1],zhi[N<<1],head[N];
void add(int x,int y,int z){
tot++,bian[tot]=y,zhi[tot]=z,nxt[tot]=head[x],head[x]=tot;
}
int dfn[N],cnt;
int fa[N][t],c[N][t],dep[N],sz[N];
vector<int>q;
bool cmp(int x,int y){
return dfn[x]<dfn[y];
}
void dfs(int x,int f){
sz[x]=1;
dfn[x]=++cnt;
dep[x]=dep[f]+1;
fa[x][0]=f;
for(int i=1;i<t;++i){
fa[x][i]=fa[fa[x][i-1]][i-1];
c[x][i]=min(c[x][i-1],c[fa[x][i-1]][i-1]);
}
for(int i=head[x];i;i=nxt[i]){
int y=bian[i];
if(y==f)continue;
c[y][0]=zhi[i];
dfs(y,x);
sz[x]+=sz[y];
}
}
int LCA(int x,int y){
if(dep[x]<dep[y])swap(x,y);
for(int i=t-1;~i;--i){
if(dep[x]-(1<<i)>=dep[y]){
x=fa[x][i];
}
}
if(x==y)return x;
for(int i=t-1;~i;--i){
if(fa[x][i]!=fa[y][i]){
x=fa[x][i],y=fa[y][i];
}
}
return fa[x][0];
}
long long getmin(int x,int lca){
int ret=1e18;
for(int i=t-1;~i;--i){
if(dep[x]-(1<<i)>=dep[lca]){
ret=min(ret,c[x][i]);
x=fa[x][i];
}
}
return ret;
}
#define IT vector<int>::iterator
long long dp[N];
int it,v[N];
void dfs1(){
int x=q[it];
long long ret=0;
while(1){
if(it+1==q.size())break;
if(dfn[q[it+1]]<=dfn[x]+sz[x]-1){
int y=q[++it];
if(v[y]==1){
dfs1();
dp[y]=getmin(y,x);
}
else dp[y]=1e18,dfs1(),dp[y]=min(dp[y],getmin(y,x));
ret+=dp[y];
}else break;
}
if(ret)dp[x]=min(dp[x],ret);
}
int main(){
dfn[0]=1e9;
cin>>n;
for(int i=1;i<n;++i){
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
add(y,x,z);
}
dfs(1,0);
int T;
cin>>T;
while(T--){
q.clear();
int m;
scanf("%d",&m);
for(int i=1;i<=m;++i){
int x;
scanf("%d",&x);
v[x]=1;
q.push_back(x);
}
sort(q.begin(),q.end(),cmp);
for(int i=0;i<m-1;++i){
q.push_back(LCA(q[i],q[i+1]));
}
q.push_back(1);
sort(q.begin(),q.end());
q.erase(unique(q.begin(),q.end()),q.end());
sort(q.begin(),q.end(),cmp);
m=q.size();it=0;
dp[q[0]]=1e18;
dfs1();
for(int i=0;i<m;++i){
v[q[i]]=0;
}
printf("%lld\n",dp[*q.begin()]);
}
}
[SDOI2011]消耗战(虚树+树形动规)的更多相关文章
- BZOJ.2286.[SDOI2011]消耗战(虚树 树形DP)
题目链接 BZOJ 洛谷P2495 树形DP,对于每棵子树要么逐个删除其中要删除的边,要么直接断连向父节点的边. 如果当前点需要删除,那么直接断不需要再管子树. 复杂度O(m*n). 对于两个要删除的 ...
- BZOJ 2286: [Sdoi2011]消耗战 虚树 树形dp 动态规划 dfs序
https://www.lydsy.com/JudgeOnline/problem.php?id=2286 wa了两次因为lca犯了zz错误 这道题如果不多次询问的话就是裸dp. 一棵树上多次询问,且 ...
- BZOJ2286: [Sdoi2011]消耗战(虚树/树形DP)
Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 5246 Solved: 1978[Submit][Status][Discuss] Descript ...
- 【BZOJ-2286】消耗战 虚树 + 树形DP
2286: [Sdoi2011消耗战 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 2120 Solved: 752[Submit][Status] ...
- 【BZOJ2286】【SDOI2011】消耗战 [虚树][树形DP]
消耗战 Time Limit: 20 Sec Memory Limit: 512 MB[Submit][Status][Discuss] Description 在一场战争中,战场由n个岛屿和n-1 ...
- bzoj 2286: [Sdoi2011]消耗战 虚树+树dp
2286: [Sdoi2011]消耗战 Time Limit: 20 Sec Memory Limit: 512 MB[Submit][Status][Discuss] Description 在一 ...
- 【BZOJ2286】[Sdoi2011]消耗战 虚树
[BZOJ2286][Sdoi2011]消耗战 Description 在一场战争中,战场由n个岛屿和n-1个桥梁组成,保证每两个岛屿间有且仅有一条路径可达.现在,我军已经侦查到敌军的总部在编号为1的 ...
- [BZOJ2286][SDOI2011]消耗战(虚树DP)
2286: [Sdoi2011]消耗战 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 4998 Solved: 1867[Submit][Statu ...
- BZOJ 2286 消耗战 (虚树+树形DP)
给出一个n节点的无向树,每条边都有一个边权,给出m个询问,每个询问询问ki个点,问切掉一些边后使得这些顶点无法与顶点1连接.最少的边权和是多少.(n<=250000,sigma(ki)<= ...
随机推荐
- 装箱问题(NOIP2001&水题测试2017082401)
题目链接:装箱问题 这题经典的01背包. 动规. 设计状态f[n][V]表示前n个物体放在V中的最大体积是多少. 所以代码如下: #include<bits/stdc++.h> using ...
- HQL和SQL查询
转自http://blog.csdn.net/aaa1117a8w5s6d/article/details/7757097 HQL和SQL的区别 标签: sqlhibernatejavasessio ...
- Codeforces 1098 简要题解
文章目录 前言 A题 B题 C题 D题 E题 传送门 前言 没错因为蒟蒻太菜了这场的最后一道题也咕掉了,只有AAA至EEE的题解233 A题 传送门 题意简述:给出一棵带点权的树,根节点深度为111, ...
- JSON_FORCE_OBJECT 数字索引数组 强转对象
$abc = array('a','b','c','d','e','f','g'); echo '<pre>'; var_dump($abc); echo json_encode($abc ...
- 系统当前时间system.currenttimemillis与new Date().getTime() 区别
system.currenttimemillis //取到毫秒数,并且执行效率高 new Date().getTime()没他精确
- boost-使用format和lexical_cast实现数字和字符串之间的转换
使用boost的format可以实现数字到string的格式化转换,boost的lexical_cast可以实现string到数值的转换,eg: #include "boost/format ...
- 利用xshell远程连接centos安装oracle11g时在图形界面登录
1.首先给centos安装桌面环境.( yum groupinstall ‘GNOME Desktop’) 2.安装Xmanager软件 3.打开xshell,新建连接 填好主机和名称后,点击左侧连接 ...
- 很实用的linux 上的svn安装和svnserver 的重启
虽然在windows上搭建SVN很简单,但是效能却不高,这当然是和linux相比了.然而在linux上搭建SVN却非常繁琐,所以今天这篇文章就来一步一步教您如何在Centos上搭建SVN 安装 #yu ...
- winSocket编程(一)WSAStartup
/******************************************************************** 更新日期:2017-11-07 10:33:08* 进度:完 ...
- 1085. Perfect Sequence
Given a sequence of positive integers and another positive integer p. The sequence is said to be a “ ...