Problem Statement

描述

一日,崔克茜来到小马镇表演魔法。

其中有一个节目是开锁咒:舞台上有 n 个盒子,每个盒子中有一把钥匙,对于每个盒子而言有且仅有一把钥匙能打开它。初始时,崔克茜将会随机地选择 k 个盒子用魔法将它们打开。崔克茜想知道最后所有盒子都被打开的概率,你能帮助她回答这个问题吗?

输入

第一行一个整数$T$ ($T \leq 100$)表示数据组数。 对于每组数据,第一行有两个整数$n$和$k$ ($1 \leq n \leq 300, 0 \leq k \leq n$)。 第二行有$n$个整数$a_i$,表示第$i$个盒子中,装有可以打开第$a_i$个盒子的钥匙。

输出

对于每组询问,输出一行表示对应的答案。要求相对误差不超过四位小数。

样例输入

4

5 1

2 5 4 3 1

5 2

2 5 4 3 1

5 3

2 5 4 3 1

5 4

2 5 4 3 1

样例输出

0.000000000

0.600000000

0.900000000

1.000000000

The problem is to compute the probability that use $k$ keys to open the $n$ boxes. In fact we only need to comupte the number of methods that successfully opening $n$ boxes by $k$ choices. Then dividing $C_n^k$ is the final result. So, let's focus on the more refined problem.

First, let's use some notations to express the problem.

Assume the key in box $i$ can open box $a[i]$. Then, the boxes can be opend from box $1$ to $n$ is {$a[1], a[2], ..., a[n]$}.

If we determine open box $i$, then we'll use the key $a[i]$ to open box $a[i]$ which contains the $a[a[i]]$ box key.

So we can assume the keys in the $n$ boxes as a permutation of numbers {$1, 2, ..., n$}. The math model here is just the permutation group in Abstract Algebra.

In order to open all $n$ boxes, we first need to check how many cycles in the permutation. Because the number of keys we need to open all boxes must be greater than or equal to the number of cycles in permutation.

So, if define the number of keys is $k$, and the number of cycles in the $n$-permutation is $m$, the above states $k \geq m$.

Now, we need to design an algorithm to solve the problem. The basical idea is Dynamic Programming (DP).

In general, the hard part of DP is to form a sub-problem. Here, based on the analysis of the permutation above, we'll set the sub-problem by cycles. Because there're $m$ cycles in the $n$-permutation, we'll use $m$ steps to solve the problem.

Define: dp[i][j] =  the number of methods that using $j$ keys to solve first $i$ cycles.

Thus the problem can be expressed as computing $dp[m][k]$.

Next, let's construct the recursion. Assume we need to compute $dp[i][j]$.

  • In order to solve first $i$ cycles, we can first solve $i-1$ cycles and then the $i^{th}$ cycle.
  • If we use $k_i$ keys to solve the $i^{th}$ cycle, we can use only $j-k_i$ keys to solve the first $i-1$ cycles.
  • $k_i$ can vary from $1$ to $j$. (Because the initial status may not need key solving, thus $m$ can vary to $j$.) And $k_i$ can't be greater than the size of $i^{th}$ cycle, denoted as $l_i$. (Because every key is belong to one box, so the number of keys we choose can't be greater than the number of boxes in all.)
  • For every fixed $k_i$, we just need to multiply the result of first $i-1$ cycles and the result of $i^{th}$ cycle, i.e. $dp[i-1][j-k_i] * C_{l_i}^{k_i}$
    (Every $k_i$ keys can solve the $i^{th}$ cycle, so the result of solving $i^{th}$ cycle is $ C_{l_i}^{k_i}$.)

According to above statements, we can get the recursion equation. Here, we use array $comb[n][m]$ to denote the math combination $C_n^m$.

$$dp[i][j] = \sum_{m=1}^{j}(dp[i-1][j-m]*comb[cycle\_i\_length][m])$$

So, the problem is done. But there're two additional problems we need to solve priori.

  • First, for efficiency, we can compute the combination numbers before we do the DP algorithm. The computing is also based on DP thinking:
    • Compute the combination number by DP, i.e. the simple math equation $C_i^j = C_{i-1}^j + C_{i-1}^{j-1}$. Code is
for(int i = 0; i < 500; ++i)
for(int j = 0; j <= i; ++j)
comb[i][j] =
(0 == i || 0 == j) ? 1 : comb[i-1][j] + comb[i-1][j-1];
  • Second, we need to compute the $m$ sizes of cycles in the $n$-permutation:
    • Get the cycle information in a $n$-permutation, including number of cycles and the size of every cycle. Here we use array $perm$ to indicate the permutation of $n$ elements.
vector<int> cycles;    //store the cycle information
bool used[500];
memset(used, 0, sizeof used); for (int i = 0; i < n; ++i){
if(used[i] == true)
continue; int num = 0;
int idx = i;
while(!used[idx])
{
++num;
used[idx] = true;
idx = perm[idx];
} cycles.push_back(num);
}

Hiho #1075: 开锁魔法III的更多相关文章

  1. hihocoder 1075 : 开锁魔法III

    描述 一日,崔克茜来到小马镇表演魔法. 其中有一个节目是开锁咒:舞台上有 n 个盒子,每个盒子中有一把钥匙,对于每个盒子而言有且仅有一把钥匙能打开它.初始时,崔克茜将会随机地选择 k 个盒子用魔法将它 ...

  2. #1075 : 开锁魔法III

    描述 一日,崔克茜来到小马镇表演魔法. 其中有一个节目是开锁咒:舞台上有 n 个盒子,每个盒子中有一把钥匙,对于每个盒子而言有且仅有一把钥匙能打开它.初始时,崔克茜将会随机地选择 k 个盒子用魔法将它 ...

  3. HihoCoder 1075 开锁魔法III(概率DP+组合)

    描述 一日,崔克茜来到小马镇表演魔法. 其中有一个节目是开锁咒:舞台上有 n 个盒子,每个盒子中有一把钥匙,对于每个盒子而言有且仅有一把钥匙能打开它.初始时,崔克茜将会随机地选择 k 个盒子用魔法将它 ...

  4. hihoCode 1075 : 开锁魔法III

    时间限制:6000ms 单点时限:1000ms 内存限制:256MB 描述 一日,崔克茜来到小马镇表演魔法. 其中有一个节目是开锁咒:舞台上有 n 个盒子,每个盒子中有一把钥匙,对于每个盒子而言有且仅 ...

  5. hrb——开锁魔法I——————【规律】

    解题思路:从1到n的倒数之和. #include<stdio.h> #include<string.h> #include<algorithm> using nam ...

  6. hihocoder1075【开锁魔法】

    hihocoder1075[开锁魔法] 题意是给你一个 \(1-n\) 的置换,求选 \(k\) 个可以遍历所有点的概率. 题目可以换个模型:有 \(n\) 个球,有 \(cnt\) 种不同的颜色,求 ...

  7. BZOJ 5004: 开锁魔法II 期望 + 组合

    Description 题面:www.lydsy.com/JudgeOnline/upload/task.pdf Input Output 一般概率题有两种套路: 满足条件的方案/总方案. 直接求概率 ...

  8. bzoj5003: 与链 5004: 开锁魔法II 5005:乒乓游戏

    www.lydsy.com/JudgeOnline/upload/task.pdf 第一题题意可以转为选一个长度k的序列,每一项二进制的1的位置被下一项包含,且总和为1,考虑每个二进制位的出现位置,可 ...

  9. 【bzoj5004】开锁魔法II 组合数学+概率dp

    题目描述 有 $n$ 个箱子,每个箱子里有且仅有一把钥匙,每个箱子有且仅有一把钥匙可以将其打开.现在随机打开 $m$ 个箱子,求能够将所有箱子打开的概率. 题解 组合数学+概率dp 题目约定了每个点的 ...

随机推荐

  1. android 使用webview 加载网页

    1. <WebView android:id="@+id/webView" android:layout_width="fill_parent" andr ...

  2. .net利用NPOI生成excel文件

    整理代码,这个是生成excel文件,用的是HSSF的方式,只能生成65535行,256列的数据,如果要看office07之后的生成,之前的随笔里提过.这个是一个完整的过程. 首先是已经查找好的数据,这 ...

  3. 对团队项目的NABCD的分析

    需求(N):我们的软件是面向广大想记录自己所爱动植物成长点滴的人.目前没有很好地软件,只有手机或者电脑上的笔记本和备忘录. 做法(A):我们的软件可以交流可以节约积累知识的时间,将记录从记事本中摘出来 ...

  4. ubuntu下安装maven(转载)

    下载maven http://maven.apache.org/download.cgi 解压 tar -xzvf apache-maven-3.0.5-bin.tar.gz 配置环境变量 sudo ...

  5. spring学习 五 依赖注入的方式

    依赖注入有两种方式: 1 构造注入,如果<bean>标签下使用<contructor-arg>,则是构造注入 2 setter注入,就是调用setter方法注入,如果<b ...

  6. mybatis学习 十三 resultMap标签 一对一

    1 .<resultMap>标签 写在mapper.xml中,由程序员控制SQL查询结果与实体类的映射关系. 在写<select>标签中,有一个resultType属性,此时s ...

  7. java struts2 的 文件下载

    jsp: <%@ page language="java" contentType="text/html; charset=UTF-8" pageEnco ...

  8. 2018.11.06 洛谷P1941 飞扬的小鸟(背包)

    传送门 上升看成完全背包. 下降看成01背包. 注意边界转移就行了. 代码: #include<bits/stdc++.h> using namespace std; inline int ...

  9. Codeforces Round #543 (Div. 2)B,C

    https://codeforces.com/contest/1121 B 题意 给你n(<=1000)个数ai,找出最多对和相等的数,每个数只能用一次,且每个数保证各不相同 题解 重点:每个数 ...

  10. Codeforces Round #523 (Div. 2) F. Katya and Segments Sets (交互题+思维)

    https://codeforces.com/contest/1061/problem/F 题意 假设存在一颗完全k叉树(n<=1e5),允许你进行最多(n*60)次询问,然后输出这棵树的根,每 ...