Hiho #1075: 开锁魔法III
Problem Statement
描述
一日,崔克茜来到小马镇表演魔法。
其中有一个节目是开锁咒:舞台上有 n 个盒子,每个盒子中有一把钥匙,对于每个盒子而言有且仅有一把钥匙能打开它。初始时,崔克茜将会随机地选择 k 个盒子用魔法将它们打开。崔克茜想知道最后所有盒子都被打开的概率,你能帮助她回答这个问题吗?
输入
第一行一个整数$T$ ($T \leq 100$)表示数据组数。 对于每组数据,第一行有两个整数$n$和$k$ ($1 \leq n \leq 300, 0 \leq k \leq n$)。 第二行有$n$个整数$a_i$,表示第$i$个盒子中,装有可以打开第$a_i$个盒子的钥匙。
输出
对于每组询问,输出一行表示对应的答案。要求相对误差不超过四位小数。
样例输入
4
5 1
2 5 4 3 1
5 2
2 5 4 3 1
5 3
2 5 4 3 1
5 4
2 5 4 3 1
样例输出
0.000000000
0.600000000
0.900000000
1.000000000
The problem is to compute the probability that use $k$ keys to open the $n$ boxes. In fact we only need to comupte the number of methods that successfully opening $n$ boxes by $k$ choices. Then dividing $C_n^k$ is the final result. So, let's focus on the more refined problem.
First, let's use some notations to express the problem.
Assume the key in box $i$ can open box $a[i]$. Then, the boxes can be opend from box $1$ to $n$ is {$a[1], a[2], ..., a[n]$}.
If we determine open box $i$, then we'll use the key $a[i]$ to open box $a[i]$ which contains the $a[a[i]]$ box key.
So we can assume the keys in the $n$ boxes as a permutation of numbers {$1, 2, ..., n$}. The math model here is just the permutation group in Abstract Algebra.
In order to open all $n$ boxes, we first need to check how many cycles in the permutation. Because the number of keys we need to open all boxes must be greater than or equal to the number of cycles in permutation.
So, if define the number of keys is $k$, and the number of cycles in the $n$-permutation is $m$, the above states $k \geq m$.
Now, we need to design an algorithm to solve the problem. The basical idea is Dynamic Programming (DP).
In general, the hard part of DP is to form a sub-problem. Here, based on the analysis of the permutation above, we'll set the sub-problem by cycles. Because there're $m$ cycles in the $n$-permutation, we'll use $m$ steps to solve the problem.
Define: dp[i][j] = the number of methods that using $j$ keys to solve first $i$ cycles.
Thus the problem can be expressed as computing $dp[m][k]$.
Next, let's construct the recursion. Assume we need to compute $dp[i][j]$.
- In order to solve first $i$ cycles, we can first solve $i-1$ cycles and then the $i^{th}$ cycle.
- If we use $k_i$ keys to solve the $i^{th}$ cycle, we can use only $j-k_i$ keys to solve the first $i-1$ cycles.
- $k_i$ can vary from $1$ to $j$. (Because the initial status may not need key solving, thus $m$ can vary to $j$.) And $k_i$ can't be greater than the size of $i^{th}$ cycle, denoted as $l_i$. (Because every key is belong to one box, so the number of keys we choose can't be greater than the number of boxes in all.)
- For every fixed $k_i$, we just need to multiply the result of first $i-1$ cycles and the result of $i^{th}$ cycle, i.e. $dp[i-1][j-k_i] * C_{l_i}^{k_i}$
(Every $k_i$ keys can solve the $i^{th}$ cycle, so the result of solving $i^{th}$ cycle is $ C_{l_i}^{k_i}$.)
According to above statements, we can get the recursion equation. Here, we use array $comb[n][m]$ to denote the math combination $C_n^m$.
$$dp[i][j] = \sum_{m=1}^{j}(dp[i-1][j-m]*comb[cycle\_i\_length][m])$$
So, the problem is done. But there're two additional problems we need to solve priori.
- First, for efficiency, we can compute the combination numbers before we do the DP algorithm. The computing is also based on DP thinking:
- Compute the combination number by DP, i.e. the simple math equation $C_i^j = C_{i-1}^j + C_{i-1}^{j-1}$. Code is
for(int i = 0; i < 500; ++i)
for(int j = 0; j <= i; ++j)
comb[i][j] =
(0 == i || 0 == j) ? 1 : comb[i-1][j] + comb[i-1][j-1];
- Second, we need to compute the $m$ sizes of cycles in the $n$-permutation:
- Get the cycle information in a $n$-permutation, including number of cycles and the size of every cycle. Here we use array $perm$ to indicate the permutation of $n$ elements.
vector<int> cycles; //store the cycle information
bool used[500];
memset(used, 0, sizeof used); for (int i = 0; i < n; ++i){
if(used[i] == true)
continue; int num = 0;
int idx = i;
while(!used[idx])
{
++num;
used[idx] = true;
idx = perm[idx];
} cycles.push_back(num);
}
Hiho #1075: 开锁魔法III的更多相关文章
- hihocoder 1075 : 开锁魔法III
描述 一日,崔克茜来到小马镇表演魔法. 其中有一个节目是开锁咒:舞台上有 n 个盒子,每个盒子中有一把钥匙,对于每个盒子而言有且仅有一把钥匙能打开它.初始时,崔克茜将会随机地选择 k 个盒子用魔法将它 ...
- #1075 : 开锁魔法III
描述 一日,崔克茜来到小马镇表演魔法. 其中有一个节目是开锁咒:舞台上有 n 个盒子,每个盒子中有一把钥匙,对于每个盒子而言有且仅有一把钥匙能打开它.初始时,崔克茜将会随机地选择 k 个盒子用魔法将它 ...
- HihoCoder 1075 开锁魔法III(概率DP+组合)
描述 一日,崔克茜来到小马镇表演魔法. 其中有一个节目是开锁咒:舞台上有 n 个盒子,每个盒子中有一把钥匙,对于每个盒子而言有且仅有一把钥匙能打开它.初始时,崔克茜将会随机地选择 k 个盒子用魔法将它 ...
- hihoCode 1075 : 开锁魔法III
时间限制:6000ms 单点时限:1000ms 内存限制:256MB 描述 一日,崔克茜来到小马镇表演魔法. 其中有一个节目是开锁咒:舞台上有 n 个盒子,每个盒子中有一把钥匙,对于每个盒子而言有且仅 ...
- hrb——开锁魔法I——————【规律】
解题思路:从1到n的倒数之和. #include<stdio.h> #include<string.h> #include<algorithm> using nam ...
- hihocoder1075【开锁魔法】
hihocoder1075[开锁魔法] 题意是给你一个 \(1-n\) 的置换,求选 \(k\) 个可以遍历所有点的概率. 题目可以换个模型:有 \(n\) 个球,有 \(cnt\) 种不同的颜色,求 ...
- BZOJ 5004: 开锁魔法II 期望 + 组合
Description 题面:www.lydsy.com/JudgeOnline/upload/task.pdf Input Output 一般概率题有两种套路: 满足条件的方案/总方案. 直接求概率 ...
- bzoj5003: 与链 5004: 开锁魔法II 5005:乒乓游戏
www.lydsy.com/JudgeOnline/upload/task.pdf 第一题题意可以转为选一个长度k的序列,每一项二进制的1的位置被下一项包含,且总和为1,考虑每个二进制位的出现位置,可 ...
- 【bzoj5004】开锁魔法II 组合数学+概率dp
题目描述 有 $n$ 个箱子,每个箱子里有且仅有一把钥匙,每个箱子有且仅有一把钥匙可以将其打开.现在随机打开 $m$ 个箱子,求能够将所有箱子打开的概率. 题解 组合数学+概率dp 题目约定了每个点的 ...
随机推荐
- TFS SDK
vs2013 已包含. 可参考 TFS SDK: Connecting to TFS 2010 & TFS 2012 Programmatically http://geekswithblog ...
- 在ugui上显示3d物体
1.接下来,使Cube的Layer和背景一样为UI层, 2.在将我们的主相机culling Mask改为UI,如果你还想渲染其他层的物体,可以根据需要该为需要的层,或者直接改为Everyting 3. ...
- 2018.11.30 spoj220 Relevant Phrases of Annihilation(后缀数组+二分答案)
传送门 代码: 先用特殊字符把所有字符串连接在一起. 然后二分答案将sasasa数组分组. 讨论是否存在一个组满足组内对于每一个字符串都存在两段不相交字串满足条件. #include<bits/ ...
- 2018.10.31 vijos1052贾老二算算术(高斯消元)
传送门 高斯消元模板题. 写的时候反了sbsbsb错误消元的时候除数和被除数反了. 所以把板子贴上来压压惊. 代码: #include<bits/stdc++.h> using names ...
- iphone导入照片不显示,不同步怎么整
可以借助itools或者爱思助手来处理 进入电脑软件后 找到文件管理---->文件系统(用户)这个目录 找到photodata这个文件夹,将photos.sqlite文件删除 最重要的一步来了. ...
- int -2147483648 ----- 2147483647
int最大值+1为什么是-2147483648最小值-1为什么是2147483647 今天一个新手学编程就问到这个问题,很多人第一次学编程肯定会遇到这个问题,大部分都知道是溢出之类的,用源码和补码 ...
- 学习node.js的C++扩展
本想买本书,可是太贵,了一下作者可惜没有回应,不然也会去支持一下.于是自己baidu罗.先是从这个入手 安装好环境 https://github.com/nodejs/node-gyp#install ...
- FPGA之初认识
什么是FPGA FPGA(Field-Programmable Gate Array),即现场可编程门阵列 .看到编程两个字码农就笑了,不就是编程嘛,那可是我们的强项 .且慢,此编程非彼编程 .一定要 ...
- Latex中图表位置的控制
\begin{figure}[!htbp] 其中htbp是可选的,它们分别代表 !-忽略“美学”标准 h-here t-top b-bottom p-page-of-its-own
- Web结构组件
一.Web结构组件 1.代理 位于客户端和服务器之间的HTTP实体,接收客户端的所有HTTP请求,并将这些请求转发给HTTP服务器. 2.缓存 HTTP的仓库,使常用的页面的副本可以保存在离客户端更近 ...