先把flume1.7的源码包下载

http://archive.apache.org/dist/flume/1.7.0/

下载解压后

我们通过IDEA这个软件来打开这个工程

点击ok后我们选择打开一个新的窗口

不过这个默认方式导入加载时间很长,建议大家用maven方式导入。

导入之后我们看这个类

看看我们的数据源,就是我们之前下载好的搜狗实验室的数据,之前已经上传到节点1去了

这个是我们要配置flume的模型

下面我们来配置节点1的flume

配置jdk的绝对路径

下面这个配置暂时这样配置先,往后可能会修改

下面对下载好的数据进行预处理一下,因为下载下来的数据格式比较混乱

先是按行来把制表符换成逗号,然后生成weblog2.log

接下来是按行把空格换成逗号生成weblog3.log

这样子我们就统一用逗号隔开了

把没用的文件删除掉

改下名字

把预处理完的weblog.log文件分发到节点2 和节点3上去

我们对导入的flume源码进行二次开发

我们不要动他原来的,我们新建一个类

然后把这个类的内容拷过来然后修改文件名和类名

package org.apache.flume.sink.hbase;

/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/ import com.google.common.base.Charsets;
import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.FlumeException;
import org.apache.flume.conf.ComponentConfiguration;
import org.hbase.async.AtomicIncrementRequest;
import org.hbase.async.PutRequest; import java.util.ArrayList;
import java.util.List;
//package org.apache.flume.sink.hbase; import com.google.common.base.Charsets;
import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.FlumeException;
import org.apache.flume.conf.ComponentConfiguration;
import org.apache.flume.sink.hbase.SimpleHbaseEventSerializer.KeyType;
import org.hbase.async.AtomicIncrementRequest;
import org.hbase.async.PutRequest; import java.util.ArrayList;
import java.util.List; /**
* A simple serializer to be used with the AsyncHBaseSink
* that returns puts from an event, by writing the event
* body into it. The headers are discarded. It also updates a row in hbase
* which acts as an event counter.
*
* Takes optional parameters:<p>
* <tt>rowPrefix:</tt> The prefix to be used. Default: <i>default</i><p>
* <tt>incrementRow</tt> The row to increment. Default: <i>incRow</i><p>
* <tt>suffix:</tt> <i>uuid/random/timestamp.</i>Default: <i>uuid</i><p>
*
* Mandatory parameters: <p>
* <tt>cf:</tt>Column family.<p>
* Components that have no defaults and will not be used if absent:
* <tt>payloadColumn:</tt> Which column to put payload in. If it is not present,
* event data will not be written.<p>
* <tt>incrementColumn:</tt> Which column to increment. If this is absent, it
* means no column is incremented.
*/
public class KfkAsyncHbaseEventSerializer implements AsyncHbaseEventSerializer {
private byte[] table;
private byte[] cf;
private byte[] payload;
private byte[] payloadColumn;
private byte[] incrementColumn;
private String rowPrefix;
private byte[] incrementRow;
private SimpleHbaseEventSerializer.KeyType keyType; @Override
public void initialize(byte[] table, byte[] cf) {
this.table = table;
this.cf = cf;
} @Override
public List<PutRequest> getActions() {
List<PutRequest> actions = new ArrayList<PutRequest>();
if (payloadColumn != null) {
byte[] rowKey;
try {
switch (keyType) {
case TS:
rowKey = SimpleRowKeyGenerator.getTimestampKey(rowPrefix);
break;
case TSNANO:
rowKey = SimpleRowKeyGenerator.getNanoTimestampKey(rowPrefix);
break;
case RANDOM:
rowKey = SimpleRowKeyGenerator.getRandomKey(rowPrefix);
break;
default:
rowKey = SimpleRowKeyGenerator.getUUIDKey(rowPrefix);
break;
}
PutRequest putRequest = new PutRequest(table, rowKey, cf,
payloadColumn, payload);
actions.add(putRequest);
} catch (Exception e) {
throw new FlumeException("Could not get row key!", e);
}
}
return actions;
} public List<AtomicIncrementRequest> getIncrements() {
List<AtomicIncrementRequest> actions = new ArrayList<AtomicIncrementRequest>();
if (incrementColumn != null) {
AtomicIncrementRequest inc = new AtomicIncrementRequest(table,
incrementRow, cf, incrementColumn);
actions.add(inc);
}
return actions;
} @Override
public void cleanUp() {
// TODO Auto-generated method stub } @Override
public void configure(Context context) {
String pCol = context.getString("payloadColumn", "pCol");
String iCol = context.getString("incrementColumn", "iCol");
rowPrefix = context.getString("rowPrefix", "default");
String suffix = context.getString("suffix", "uuid");
if (pCol != null && !pCol.isEmpty()) {
if (suffix.equals("timestamp")) {
keyType = SimpleHbaseEventSerializer.KeyType.TS;
} else if (suffix.equals("random")) {
keyType = SimpleHbaseEventSerializer.KeyType.RANDOM;
} else if (suffix.equals("nano")) {
keyType = SimpleHbaseEventSerializer.KeyType.TSNANO;
} else {
keyType = SimpleHbaseEventSerializer.KeyType.UUID;
}
payloadColumn = pCol.getBytes(Charsets.UTF_8);
}
if (iCol != null && !iCol.isEmpty()) {
incrementColumn = iCol.getBytes(Charsets.UTF_8);
}
incrementRow = context.getString("incrementRow", "incRow").getBytes(Charsets.UTF_8);
} @Override
public void setEvent(Event event) {
this.payload = event.getBody();
} @Override
public void configure(ComponentConfiguration conf) {
// TODO Auto-generated method stub
} }
在原来基础上稍微做修改

 

按住ctrl键单机鼠标进去

添加以下内容

/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.flume.sink.hbase; import java.io.UnsupportedEncodingException;
import java.util.Random;
import java.util.UUID; /**
* Utility class for users to generate their own keys. Any key can be used,
* this is just a utility that provides a set of simple keys.
*/
public class SimpleRowKeyGenerator { public static byte[] getUUIDKey(String prefix) throws UnsupportedEncodingException {
return (prefix + UUID.randomUUID().toString()).getBytes("UTF8");
} public static byte[] getRandomKey(String prefix) throws UnsupportedEncodingException {
return (prefix + String.valueOf(new Random().nextLong())).getBytes("UTF8");
} public static byte[] getTimestampKey(String prefix) throws UnsupportedEncodingException {
return (prefix + String.valueOf(System.currentTimeMillis())).getBytes("UTF8");
} public static byte[] getNanoTimestampKey(String prefix) throws UnsupportedEncodingException {
return (prefix + String.valueOf(System.nanoTime())).getBytes("UTF8");
} public static byte[] getKfkRowKey(String userid,String datetime) throws UnsupportedEncodingException {
return (userid + datetime + String.valueOf(System.currentTimeMillis())).getBytes("UTF8");
} }

继续修改,修改后的代码是下面的

 KfkAsyncHbaseEventSerializer.java
package org.apache.flume.sink.hbase;

/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/ import com.google.common.base.Charsets;
import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.FlumeException;
import org.apache.flume.conf.ComponentConfiguration;
import org.hbase.async.AtomicIncrementRequest;
import org.hbase.async.PutRequest; import java.util.ArrayList;
import java.util.List;
//package org.apache.flume.sink.hbase; import com.google.common.base.Charsets;
import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.FlumeException;
import org.apache.flume.conf.ComponentConfiguration;
import org.apache.flume.sink.hbase.SimpleHbaseEventSerializer.KeyType;
import org.hbase.async.AtomicIncrementRequest;
import org.hbase.async.PutRequest; import java.util.ArrayList;
import java.util.List; /**
* A simple serializer to be used with the AsyncHBaseSink
* that returns puts from an event, by writing the event
* body into it. The headers are discarded. It also updates a row in hbase
* which acts as an event counter.
*
* Takes optional parameters:<p>
* <tt>rowPrefix:</tt> The prefix to be used. Default: <i>default</i><p>
* <tt>incrementRow</tt> The row to increment. Default: <i>incRow</i><p>
* <tt>suffix:</tt> <i>uuid/random/timestamp.</i>Default: <i>uuid</i><p>
*
* Mandatory parameters: <p>
* <tt>cf:</tt>Column family.<p>
* Components that have no defaults and will not be used if absent:
* <tt>payloadColumn:</tt> Which column to put payload in. If it is not present,
* event data will not be written.<p>
* <tt>incrementColumn:</tt> Which column to increment. If this is absent, it
* means no column is incremented.
*/
public class KfkAsyncHbaseEventSerializer implements AsyncHbaseEventSerializer {
private byte[] table;
private byte[] cf;
private byte[] payload;
private byte[] payloadColumn;
private byte[] incrementColumn;
private String rowPrefix;
private byte[] incrementRow;
private SimpleHbaseEventSerializer.KeyType keyType; @Override
public void initialize(byte[] table, byte[] cf) {
this.table = table;
this.cf = cf;
} @Override
public List<PutRequest> getActions() {
List<PutRequest> actions = new ArrayList<PutRequest>();
if (payloadColumn != null) {
byte[] rowKey;
try { String [] columns =String.valueOf(payloadColumn).split(",");
String [] values =String.valueOf(this.payload).split(",");
for(int i=;i<columns.length;i++) {
byte[] colColumn=columns[i].getBytes();
byte[] colValue=values[i].getBytes(Charsets.UTF_8);
if(colColumn.length!=colValue.length) break; //continue;
// if(colValue.length<3) continue;
String datetime = values[].toString();
String userid = values[].toString();
rowKey = SimpleRowKeyGenerator.getKfkRowKey(userid,datetime);
//获取6个列的值最终加载到hbase
PutRequest putRequest = new PutRequest(table, rowKey, cf,
colColumn, colValue);
actions.add(putRequest);
}
} catch (Exception e) {
throw new FlumeException("Could not get row key!", e);
}
}
return actions;
} public List<AtomicIncrementRequest> getIncrements() {
List<AtomicIncrementRequest> actions = new ArrayList<AtomicIncrementRequest>();
if (incrementColumn != null) {
AtomicIncrementRequest inc = new AtomicIncrementRequest(table,
incrementRow, cf, incrementColumn);
actions.add(inc);
}
return actions;
} @Override
public void cleanUp() {
// TODO Auto-generated method stub } @Override
public void configure(Context context) {
String pCol = context.getString("payloadColumn", "pCol");
String iCol = context.getString("incrementColumn", "iCol");
rowPrefix = context.getString("rowPrefix", "default");
String suffix = context.getString("suffix", "uuid");
if (pCol != null && !pCol.isEmpty()) {
if (suffix.equals("timestamp")) {
keyType = SimpleHbaseEventSerializer.KeyType.TS;
} else if (suffix.equals("random")) {
keyType = SimpleHbaseEventSerializer.KeyType.RANDOM;
} else if (suffix.equals("nano")) {
keyType = SimpleHbaseEventSerializer.KeyType.TSNANO;
} else {
keyType = SimpleHbaseEventSerializer.KeyType.UUID;
}
payloadColumn = pCol.getBytes(Charsets.UTF_8);
}
if (iCol != null && !iCol.isEmpty()) {
incrementColumn = iCol.getBytes(Charsets.UTF_8);
}
incrementRow = context.getString("incrementRow", "incRow").getBytes(Charsets.UTF_8);
} @Override
public void setEvent(Event event) {
this.payload = event.getBody();
} @Override
public void configure(ComponentConfiguration conf) {
// TODO Auto-generated method stub
} }

现在把代码打包

我们可以看到有很多相关的依赖包,我们把不需要的删掉



直接点击Build就可以了

打好的架包在本地的工程路径的这里

现在把这个架包上传到flume的lib目录下

也就是这个目录。

可以看到上传日期,就是今天上传的

下面配置flume + kafka

agent1.sources = r1
agent1.channels = kafkaC hbaseC
agent1.sinks=kafkaSink hbaseSink #***********flume + hbase************
agent1.sources.r1.type = avro
agent1.sources.r1.channels = hbaseC
agent1.sources.r1.bind = bigdata-pro01.kfk.com
agent1.sources.r1.port=
agent1.sources.r1.threads= agent1.channels.hbaseC.type = memory
agent1.channels.hbaseC.capacity =
agent1.channels.hbaseC.transactionCapacity =
agent1.channels.hbaseC.keep-alive= agent1.sinks.hbaseSink.type = asynchbase
agent1.sinks.hbaseSink.table=weblogs
agent1.sinks.hbaseSink.columnFamily=info
agent1.sinks.hbaseSink.serializer= org.apache.flume.sink.hbase.KfkAsyncHbaseEventSerializer 
agent1.sinks.hbaseSink.channel = hbaseC
agent1.sinks.hbaseSink.serializer.payloadColumn=datatime,userid,searchname,retorder,cliorder,cliurl #**************flume + kafka***************
agent1.channels.kafkaC.type = memory
agent1.channels.kafkaC.capacity =
agent1.channels.kafkaC.transactionCapacity =
agent1.channels.kafkaC.keep-alive= agent1.sinks.kafkaSink.channel = kafkaC
agent1.sinks.kafkaSink.type= org.apache.flume.sink.kafka.KafkaSink
agent1.sinks.kafkaSink.kafka.brokerList=bigdata-pro01.kfk.com:,bigdata-pro02.kfk.com:,bigdata-pro03.kfk.com:
agent1.sinks.kafkaSink.topic=test
agent1.sinks.kafkaSink.zookeeperConnect=bigdata-pro01.kfk.com:,bigdata-pro02.kfk.com:,bigdata-pro03.kfk.com:
agent1.sinks.kafkaSink.requiredAcks=
agent1.sinks.kafkaSink.batchSize=
agent1.sinks.kafkaSink.serializer.class=kafka.serializer.StringEncoder

Flume+HBase+Kafka集成与开发的更多相关文章

  1. 新闻实时分析系统-Flume+HBase+Kafka集成与开发

    1.下载Flume源码并导入Idea开发工具 1)将apache-flume-1.7.0-src.tar.gz源码下载到本地解压 2)通过idea导入flume源码 打开idea开发工具,选择File ...

  2. 新闻网大数据实时分析可视化系统项目——9、Flume+HBase+Kafka集成与开发

    1.下载Flume源码并导入Idea开发工具 1)将apache-flume-1.7.0-src.tar.gz源码下载到本地解压 2)通过idea导入flume源码 打开idea开发工具,选择File ...

  3. Flume与Kafka集成

    一.Flume介绍 Flume是一个分布式.可靠.和高可用的海量日志聚合的系统,支持在系统中定制各类数据发送方,用于收集数据:同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能 ...

  4. flume+kafka+hbase+ELK

    一.架构方案如下图: 二.各个组件的安装方案如下: 1).zookeeper+kafka http://www.cnblogs.com/super-d2/p/4534323.html 2)hbase ...

  5. 大数据平台架构(flume+kafka+hbase+ELK+storm+redis+mysql)

    上次实现了flume+kafka+hbase+ELK:http://www.cnblogs.com/super-d2/p/5486739.html 这次我们可以加上storm: storm-0.9.5 ...

  6. flume到kafka和hbase配置

    # Flume test file# Listens via Avro RPC on port 41414 and dumps data received to the logagent.channe ...

  7. 使用flume将kafka数据sink到HBase【转】

    1. hbase sink介绍 1.1 HbaseSink 1.2 AsyncHbaseSink 2. 配置flume 3. 运行测试flume 4. 使用RegexHbaseEventSeriali ...

  8. 数据采集组件:Flume基础用法和Kafka集成

    本文源码:GitHub || GitEE 一.Flume简介 1.基础描述 Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集.聚合和传输的系统,Flume支持在日志系统中 ...

  9. 基于Flume+LOG4J+Kafka的日志采集架构方案

    本文将会介绍如何使用 Flume.log4j.Kafka进行规范的日志采集. Flume 基本概念 Flume是一个完善.强大的日志采集工具,关于它的配置,在网上有很多现成的例子和资料,这里仅做简单说 ...

随机推荐

  1. 晒一晒Jenkins那些常用插件

      Jenkins插件大师 作为CI/CD的调度中心,Jenkins具有十八般武艺,目前已有1700多个插件,功能强大到似乎有点过分了.本文主要列出平时我们常用的插件. 以下这两个网站是Jenkins ...

  2. 我发起了一个 .Net 平台上的 开源项目 知识图谱 Babana Map 和 文本文件搜索引擎 Babana Search

    起因 也是 前几天 有 网友 在 群 里发了   知识图谱   相关的文章, 还有 有 网友 问起   NLog -> LogStash -> Elastic Search  的 问题, ...

  3. redis 的 docker 镜像使用

    redis 镜像使用: 创建容器(暴露端口:6379,使用 Redis 可视化界面工具(如:Fastoredis)连接 redis 时连接该端口): docker run -it -p 6379:63 ...

  4. Ansible 常用模块之ping(四)

    一.ping 模块 1.用途: 测试主机之间的连通性: 2.关键字:ping 3.参数:无 4.用法: ansible all -m ping 命令简单,测试所有服务器是否与控制机网络连通:

  5. Swoole来实现实时异步任务队列

    假如要发100封邮件,for循环100遍,用户直接揭竿而起,什么破网站!但实际上,我们很可能有超过1万的邮件.怎么处理这个延迟的问题?答案就是用异步.把“发邮件”这个操作封装,然后后台异步地执行1万遍 ...

  6. 关于java的一些小知识(课程作业01)

    1,在java源代码中加空格注释不会影响程序的编译速度. 2,一个java类文件中真的只能有一个公有类吗? 如果只在第一个public类里面定义实体,或者两个都不定义并没有报错且程序可以运行.每个编译 ...

  7. 一文说尽 MySQL 优化原理

    说起MySQL的查询优化,相信大家收藏了一堆奇技淫巧:不能使用SELECT *.不使用NULL字段.合理创建索引.为字段选择合适的数据类型..... 你是否真的理解这些优化技巧?是否理解其背后的工作原 ...

  8. mysql_test

    ------------------ #/bin/sh binlogfile=$1 if [ ! -n $binlogfile ]thenecho "pls input your mysql ...

  9. Linux 如何测试 IO 性能(磁盘读写速度)

    这几天做MySQL性能测试,偌大一个公司,找几台性能测试机器都很纠结,终于协调到两台,IO的性能如何还不知道.数据库属于IO密集型的应用,所以还是先评估下Server的IO性能,看看是否能和线上的机器 ...

  10. switch case语句重点概况

    witch-case语句格式如下: switch(变量){ case 变量值1: //; break; case 变量值2: //...; break; ... case default: //... ...