类似于平面最近点对,考虑分治,即分别计算分割线两侧的最小三角形再考虑跨过线的三角形。

  复杂度证明也是类似的,对于某一个点,在另一侧可能与其构成最小三角形的点在一个d*d/2的矩形内(两边之和大于第三边),并且这些点所组成的三角形周长均不小于d。然而并不清楚这里至多会有多少个点,vfk曾说上界是16,我当然不会证明这个上界也构造不出来有这么多点的方案。找这些点的时候归并就可以做到线性。那么复杂度是O(nlogn)乘上枚举这些点的常数2*16*15/2,看起来根本跑不动不过这个上界肯定是特别松的所以一点也不虚。

  算距离的时候会爆int。以及luogu数据疑似有锅。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 200010
#define inf 1000000000
int n;
double ans=inf;
struct data
{
int x,y;
bool operator <(const data&a) const
{
return x<a.x||x==a.x&&y<a.y;
}
double operator -(const data&a) const
{
return sqrt(1ll*(x-a.x)*(x-a.x)+1ll*(y-a.y)*(y-a.y));
}
}a[N],b[N],c[N];
void getans(data *b,data *c,int n,int m)
{
int s=,t=;
for (int i=;i<=n;i++)
{
while (s<=m&&c[s].y+ans/<b[i].y) s++;
while (t<m&&c[t+].y-ans/<b[i].y) t++;
for (int j=s;j<t;j++)
{
double tot=b[i]-c[j];
for (int k=j+;k<=t;k++)
ans=min(ans,tot+(c[k]-b[i])+(c[k]-c[j]));
}
}
}
void solve(int l,int r)
{
if (l==r) return;
int mid=l+r>>;
solve(l,mid);
solve(mid+,r);
int n=,m=,MID=-inf;
for (int i=l;i<=mid;i++) MID=max(MID,a[i].x);
for (int i=l;i<=mid;i++)
if (*(MID-a[i].x)<ans) b[++n]=a[i];
for (int i=mid+;i<=r;i++)
if (*(a[i].x-MID)<ans) c[++m]=a[i];
getans(b,c,n,m);
getans(c,b,m,n);
int i=l,j=mid+;
for (int k=l;k<=r;k++)
if (j>r||i<=mid&&a[i].y<a[j].y) b[k]=a[i++];
else b[k]=a[j++];
for (int k=l;k<=r;k++) a[k]=b[k];
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj2458.in","r",stdin);
freopen("bzoj2458.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=;i<=n;i++) a[i].x=read(),a[i].y=read();
sort(a+,a+n+);
solve(,n);
printf("%.6lf",ans);
return ;
}

BZOJ2458 Beijing2011最小三角形(分治)的更多相关文章

  1. [BZOJ2458][BeiJing2011]最小三角形(分治)

    求平面上n个点组成的周长最小的三角形. 回忆平面最近点对的做法,找到横坐标的中点mid分治到两边,合并时考虑离mid横坐标不超过当前最小值d的所有点,按y排序后暴力更新答案. 这个题也一样,先分治到两 ...

  2. bzoj2458: [BeiJing2011]最小三角形(分治+几何)

    题目链接:bzoj2458: [BeiJing2011]最小三角形 学习推荐博客:分治法编程问题之最接近点对问题的算法分析 题解:先将所有点按x值排列,然后每次将当前区间[l,r]分成左右两半递归求解 ...

  3. 分治 - 计算几何 - BZOJ2458,[BeiJing2011]最小三角形

    http://www.lydsy.com/JudgeOnline/problem.php?id=2458 [BeiJing2011]最小三角形 描述 Frisk现在遇到了一个有趣的问题. 平面上有N个 ...

  4. BZOJ2458: [BeiJing2011]最小三角形

    类似分治最近点对的方法乱搞一下就行. #include<bits/stdc++.h> #define N 200010 #define M (s+t>>1) using nam ...

  5. BZOJ 2458: [BeiJing2011]最小三角形 (分治)

    分治就是了. 类似于分治找最近/远点对. CODE #include <bits/stdc++.h> using namespace std; const double eps = 1e- ...

  6. bzoj-2458 2458: [BeiJing2011]最小三角形(计算几何+分治)

    题目链接: 2458: [BeiJing2011]最小三角形 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1101  Solved: 380 Des ...

  7. bzoj 2458: [BeiJing2011]最小三角形 题解

    [前言]话说好久没有写题解了.到暑假了反而忙.o(╯□╰)o [原题] 2458: [BeiJing2011]最小三角形 Time Limit: 10 Sec  Memory Limit: 128 M ...

  8. BZOJ 2458: [BeiJing2011]最小三角形 | 平面分治

    题目: 给出若干个点 求三个点构成的周长最小的三角形的周长(我们认为共线的三点也算三角形) 题解: 可以参考平面最近点对的做法 只不过合并的时候改成枚举三个点更新周长最小值,其他的和最近点对大同小异 ...

  9. [BZOJ]2458: [BeiJing2011]最小三角形

    题目大意:给出平面上n个点,求最小的由这些点组成的三角形的周长.(N<=200,000) 思路:点按x坐标排序后分治,每次取出与排在中间的点的横坐标相差不超当前答案一半的点,按y坐标排序后再暴力 ...

随机推荐

  1. DB2 substr,instr使用

    看示例,查询下一年'2xxx',例如今年2014,结果为2015 select substr(char(current timestamp),1,4)+1 from SYSIBM.SYSDUMMY1; ...

  2. 简单直白的去理解AOP,了解Spring AOP,使用 @AspectJ - 读书笔记

    AOP = Aspect Oriental Programing  面向切面编程 文章里不讲AOP术语,什么连接点.切点.切面什么的,这玩意太绕,记不住也罢.旨在以简单.直白的方式理解AOP,理解Sp ...

  3. CAN2.0A 和CAN2.0B

    CAN2.0A 和CAN2.0B 原创 2015年08月03日 16:03:08 3969 CAN2.0A 是CAN协议的PART A部分,此部分定义了11bit的标识区 .CAN2.0B 是CAN协 ...

  4. odoo返写数据

    #确认按钮 反写回合同页面,当前页面反写数据: def action_split_order_ht(self,cr,uid,ids,context=None): assert len(ids)==1 ...

  5. Jquery的Ajax中contentType和dataType的区别(转载)

    上代码 $.ajax({ type: httpMethod, cache: false, contentType: "application/json; charset=utf-8" ...

  6. BroadcastReceiver广播相关 - 转

    BroadcastReceiver广播接收者用于接收系统或其他程序(包括自己程序)发送的广播. 一.注册广播 在android中,我们如果想接收到广播信息,必须自定义我们的广播接收者.要写一个类来继承 ...

  7. C# online update demo

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.W ...

  8. [Oracle]跨越 DBLINK 访问表时,数据缓存在何处的Data Buffer 中?

    结论是存储在 remote 端,这其实也很好理解.在远端能高效率地计算,当然应当在远端完成缓存和检索. ■ Before query execution via DBLINK: =========== ...

  9. 阿里云代金券 - 双12疯了~~~ 4核8G 3M带宽只要1890元/3年

    阿里云双12大促简直疯了,4核8G 3M带宽只要1890元/3年,比双11疯狂多了,双11没有上车的赶快来买吧!!! 前去阿里云双12活动页面 截图如下: 从截图中可以看出,不仅4核8G降到了地板,1 ...

  10. libgdx学习记录21——Box2d物理引擎之碰撞Contact、冲量Impulse、关节Joint

    Box2d中,物体可以接受力(Force).冲量(Impulse)和扭矩(Torque).这些物理元素都能改变物体的运动形式,并且默认都会唤醒物体,当然只是针对动态物体. 力是一个持久的效果,通过Bo ...