BZOJ2458 Beijing2011最小三角形(分治)
类似于平面最近点对,考虑分治,即分别计算分割线两侧的最小三角形再考虑跨过线的三角形。
复杂度证明也是类似的,对于某一个点,在另一侧可能与其构成最小三角形的点在一个d*d/2的矩形内(两边之和大于第三边),并且这些点所组成的三角形周长均不小于d。然而并不清楚这里至多会有多少个点,vfk曾说上界是16,我当然不会证明这个上界也构造不出来有这么多点的方案。找这些点的时候归并就可以做到线性。那么复杂度是O(nlogn)乘上枚举这些点的常数2*16*15/2,看起来根本跑不动不过这个上界肯定是特别松的所以一点也不虚。
算距离的时候会爆int。以及luogu数据疑似有锅。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 200010
#define inf 1000000000
int n;
double ans=inf;
struct data
{
int x,y;
bool operator <(const data&a) const
{
return x<a.x||x==a.x&&y<a.y;
}
double operator -(const data&a) const
{
return sqrt(1ll*(x-a.x)*(x-a.x)+1ll*(y-a.y)*(y-a.y));
}
}a[N],b[N],c[N];
void getans(data *b,data *c,int n,int m)
{
int s=,t=;
for (int i=;i<=n;i++)
{
while (s<=m&&c[s].y+ans/<b[i].y) s++;
while (t<m&&c[t+].y-ans/<b[i].y) t++;
for (int j=s;j<t;j++)
{
double tot=b[i]-c[j];
for (int k=j+;k<=t;k++)
ans=min(ans,tot+(c[k]-b[i])+(c[k]-c[j]));
}
}
}
void solve(int l,int r)
{
if (l==r) return;
int mid=l+r>>;
solve(l,mid);
solve(mid+,r);
int n=,m=,MID=-inf;
for (int i=l;i<=mid;i++) MID=max(MID,a[i].x);
for (int i=l;i<=mid;i++)
if (*(MID-a[i].x)<ans) b[++n]=a[i];
for (int i=mid+;i<=r;i++)
if (*(a[i].x-MID)<ans) c[++m]=a[i];
getans(b,c,n,m);
getans(c,b,m,n);
int i=l,j=mid+;
for (int k=l;k<=r;k++)
if (j>r||i<=mid&&a[i].y<a[j].y) b[k]=a[i++];
else b[k]=a[j++];
for (int k=l;k<=r;k++) a[k]=b[k];
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj2458.in","r",stdin);
freopen("bzoj2458.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=;i<=n;i++) a[i].x=read(),a[i].y=read();
sort(a+,a+n+);
solve(,n);
printf("%.6lf",ans);
return ;
}
BZOJ2458 Beijing2011最小三角形(分治)的更多相关文章
- [BZOJ2458][BeiJing2011]最小三角形(分治)
求平面上n个点组成的周长最小的三角形. 回忆平面最近点对的做法,找到横坐标的中点mid分治到两边,合并时考虑离mid横坐标不超过当前最小值d的所有点,按y排序后暴力更新答案. 这个题也一样,先分治到两 ...
- bzoj2458: [BeiJing2011]最小三角形(分治+几何)
题目链接:bzoj2458: [BeiJing2011]最小三角形 学习推荐博客:分治法编程问题之最接近点对问题的算法分析 题解:先将所有点按x值排列,然后每次将当前区间[l,r]分成左右两半递归求解 ...
- 分治 - 计算几何 - BZOJ2458,[BeiJing2011]最小三角形
http://www.lydsy.com/JudgeOnline/problem.php?id=2458 [BeiJing2011]最小三角形 描述 Frisk现在遇到了一个有趣的问题. 平面上有N个 ...
- BZOJ2458: [BeiJing2011]最小三角形
类似分治最近点对的方法乱搞一下就行. #include<bits/stdc++.h> #define N 200010 #define M (s+t>>1) using nam ...
- BZOJ 2458: [BeiJing2011]最小三角形 (分治)
分治就是了. 类似于分治找最近/远点对. CODE #include <bits/stdc++.h> using namespace std; const double eps = 1e- ...
- bzoj-2458 2458: [BeiJing2011]最小三角形(计算几何+分治)
题目链接: 2458: [BeiJing2011]最小三角形 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1101 Solved: 380 Des ...
- bzoj 2458: [BeiJing2011]最小三角形 题解
[前言]话说好久没有写题解了.到暑假了反而忙.o(╯□╰)o [原题] 2458: [BeiJing2011]最小三角形 Time Limit: 10 Sec Memory Limit: 128 M ...
- BZOJ 2458: [BeiJing2011]最小三角形 | 平面分治
题目: 给出若干个点 求三个点构成的周长最小的三角形的周长(我们认为共线的三点也算三角形) 题解: 可以参考平面最近点对的做法 只不过合并的时候改成枚举三个点更新周长最小值,其他的和最近点对大同小异 ...
- [BZOJ]2458: [BeiJing2011]最小三角形
题目大意:给出平面上n个点,求最小的由这些点组成的三角形的周长.(N<=200,000) 思路:点按x坐标排序后分治,每次取出与排在中间的点的横坐标相差不超当前答案一半的点,按y坐标排序后再暴力 ...
随机推荐
- odoo开发历史订单需求整体思路
第一步:找到客户对应页面,并找到他所下过的销售订单,用数据库语句查出所有数据,并去除重复数据,显示在前端, sql="select DISTINCT t2.product_id as pro ...
- laravel 5.5 《电商实战 》辅助函数
Laravel 提供了很多 辅助函数,有时候我们也需要创建自己的辅助函数. 这里介绍了 tinker,一个laravel内置的php交互式控制台,方便调试php代码 php artisan tinke ...
- BQMeetup
BQMeetup 时间:2017.12.19 地点:北京东城区东直门国华投资大厦1105
- 20155233 《网络对抗》Exp4 恶意代码分析
使用schtasks指令监控系统运行 先在C盘目录下建立一个netstatlog.bat文件,用来将记录的联网结果格式化输出到netstatlog.txt文件中,netstatlog.bat内容为: ...
- AngularJS+bootstrap-switch 实现开关控件
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- 【第四课】Linux的基础命令使用
目录 一.passwd重置密码 二.单用户模式 三.救援模式 四.设置SElinux 五.Linux的常用基础命令详解 5.1.mkdir命令 5.2.ls命令 5.3.cd命令 5.4.chmod命 ...
- 在服务器运行一个jar包,不用时终止它
1.打成jar包后,输入命令 nohup java -jar floodlight.jar >log.txt >& &//nohup 不生成 nohup.out的方法noh ...
- js之浅拷贝与深拷贝
浅拷贝:只会复制对象的第一层数据 深拷贝:不仅仅会复制第一层的数据,如果里面还有对象,会继续进行复制,直到复制到全是基本数据类型为止 简单来说,浅拷贝是都指向同一块内存区块,而深拷贝则是另外开辟了一块 ...
- linux下如何解除被占用的端口号
在本例中,假设8080端口被占用. 1.查看8080端口是否被占用: netstat -anp | grep 8080输出结果:tcp 0 0 :::8080 ...
- PowerBI开发 第十四篇:使用M公式添加列
PowerBI的查询编辑器使用Power Query M公式语言来定义查询模型,它是一种富有表现力的数据糅合(Mashup)语言,一个M查询可以计算(Evalute)一个表达式,得到一个值. 对于开发 ...