学习过程

下面是一个典型的机器学习的过程,首先给出一个输入数据,我们的算法会通过一系列的过程得到一个估计的函数,这个函数有能力对没有见过的新数据给出一个新的估计,也被称为构建一个模型。就如同上面的线性回归函数。

线性回归

线性回归假设特征和结果满足线性关系。其实线性关系的表达能力非常强大,每个特征对结果的影响强弱可以由前面的参数体现,而且每个特征变量可以首先映射到一个函数,然后再参与线性计算。这样就可以表达特征与结果之间的非线性关系。

我们用X1,X2..Xn 去描述feature里面的分量,比如x1=房间的面积,x2=房间的朝向,等等,我们可以做出一个估计函数:

θ在这儿称为参数,在这的意思是调整feature中每个分量的影响力,就是到底是房屋的面积更重要还是房屋的地段更重要。为了如果我们令X0 = 1,就可以用向量的方式来表示了:

我们程序也需要一个机制去评估我们θ是否比较好,所以说需要对我们做出的h函数进行评估,一般这个函数称为损失函数(loss function)或者错误函数(error function),描述h函数不好的程度,在下面,我们称这个函数为J函数

在这儿我们可以认为错误函数如下:

这个错误估计函数是去对x(i)的估计值与真实值y(i)差的平方和作为错误估计函数,前面乘上的1/2是为了在求导的时候,这个系数就不见了。

至于为何选择平方和作为错误估计函数,讲义后面从概率分布的角度讲解了该公式的来源。

如何调整θ以使得J(θ)取得最小值有很多方法,其中有最小二乘法(min square),是一种完全是数学描述的方法,和梯度下降法。

梯度下降法

在选定线性回归模型后,只需要确定参数θ,就可以将模型用来预测。然而θ需要在J(θ)最小的情况下才能确定。因此问题归结为求极小值问题,使用梯度下降法。梯度下降法最大的问题是求得有可能是全局极小值,这与初始点的选取有关。

梯度下降法是按下面的流程进行的:

1)首先对θ赋值,这个值可以是随机的,也可以让θ是一个全零的向量。

2)改变θ的值,使得J(θ)按梯度下降的方向进行减少。

梯度方向由J(θ)对θ的偏导数确定,由于求的是极小值,因此梯度方向是偏导数的反方向。结果为

迭代更新的方式有两种,一种是批梯度下降,也就是对全部的训练数据求得误差后再对θ进行更新,另外一种是增量梯度下降,每扫描一步都要对θ进行更新。前一种方法能够不断收敛,后一种方法结果可能不断在收敛处徘徊。

一般来说,梯度下降法收敛速度还是比较慢的。

另一种直接计算结果的方法是最小二乘法。

最小二乘法

将训练特征表示为X矩阵,结果表示成y向量,仍然是线性回归模型,误差函数不变。那么θ可以直接由下面公式得出

但此方法要求X是列满秩的,而且求矩阵的逆比较慢。

选用误差函数为平方和的概率解释

假设根据特征的预测结果与实际结果有误差,那么预测结果和真实结果满足下式:

一般来讲,误差满足平均值为0的高斯分布,也就是正态分布。那么x和y的条件概率也就是

这样就估计了一条样本的结果概率,然而我们期待的是模型能够在全部样本上预测最准,也就是概率积最大。注意这里的概率积是概率密度函数积,连续函数的概率密度函数与离散值的概率函数不同。这个概率积成为最大似然估计。我们希望在最大似然估计得到最大值时确定θ。那么需要对最大似然估计公式求导,求导结果既是

这就解释了为何误差函数要使用平方和。

当然推导过程中也做了一些假定,但这个假定符合客观规律。

带权重的线性回归

上面提到的线性回归的误差函数里系统都是1,没有权重。带权重的线性回归加入了权重信息。

基本假设是

其中假设符合公式

其中x是要预测的特征,这样假设的道理是离x越近的样本权重越大,越远的影响越小。这个公式与高斯分布类似,但不一样,因为不是随机变量。

此方法成为非参数学习算法,因为误差函数随着预测值的不同而不同,这样θ无法事先确定,预测一次需要临时计算,感觉类似KNN。

分类和logistic回归

一般来说,回归不用在分类问题上,因为回归是连续型模型,而且受噪声影响比较大。如果非要应用进入,可以使用logistic回归。

logistic回归本质上是线性回归,只是在特征到结果的映射中加入了一层函数映射,即先把特征线性求和,然后使用函数g(z)将最为假设函数来预测。g(z)可以将连续值映射到0和1上。

logistic回归的假设函数如下,线性回归假设函数只是

logistic回归用来分类0/1问题,也就是预测结果属于0或者1的二值分类问题。这里假设了二值满足伯努利分布,也就是

当然假设它满足泊松分布、指数分布等等也可以,只是比较复杂,后面会提到线性回归的一般形式。

与第7节一样,仍然求的是最大似然估计,然后求导,得到迭代公式结果为

可以看到与线性回归类似,只是换成了,而实际上就是经过g(z)映射过来的。

牛顿法来解最大似然估计

第7和第9节使用的解最大似然估计的方法都是求导迭代的方法,这里介绍了牛顿下降法,使结果能够快速的收敛。

当要求解时,如果f可导,那么可以通过迭代公式

来迭代求解最小值。

当应用于求解最大似然估计的最大值时,变成求解最大似然估计概率导数的问题。

那么迭代公式写作

当θ是向量时,牛顿法可以使用下面式子表示

 

其中是n×n的Hessian矩阵。

牛顿法收敛速度虽然很快,但求Hessian矩阵的逆的时候比较耗费时间。

当初始点X0靠近极小值X时,牛顿法的收敛速度是最快的。但是当X0远离极小值时,牛顿法可能不收敛,甚至连下降都保证不了。原因是迭代点Xk+1不一定是目标函数f在牛顿方向上的极小点。

Softmax回归

最后举了一个利用一般线性模型的例子。

假设预测值y有k种可能,即y∈{1,2,…,k}

比如k=3时,可以看作是要将一封未知邮件分为垃圾邮件、个人邮件还是工作邮件这三类。

学习总结

该讲义组织结构清晰,思路独特,讲原因,也讲推导。可贵的是讲出了问题的基本解决思路和扩展思路,更重要的是讲出了为什么要使用相关方法以及问题根源。在看似具体的解题思路中能引出更为抽象的一般解题思路,理论化水平很高。

该方法可以用在对数据多维分析和多值预测上,更适用于数据背后蕴含某种概率模型的情景。

几个问题

1:采用迭代法的时候,步长怎么确定比较好

2:最小二乘法的矩阵形式是否一般都可用

线性回归,logistic回归分类的更多相关文章

  1. Logistic回归分类算法原理分析与代码实现

    前言 本文将介绍机器学习分类算法中的Logistic回归分类算法并给出伪代码,Python代码实现. (说明:从本文开始,将接触到最优化算法相关的学习.旨在将这些最优化的算法用于训练出一个非线性的函数 ...

  2. 第七篇:Logistic回归分类算法原理分析与代码实现

    前言 本文将介绍机器学习分类算法中的Logistic回归分类算法并给出伪代码,Python代码实现. (说明:从本文开始,将接触到最优化算法相关的学习.旨在将这些最优化的算法用于训练出一个非线性的函数 ...

  3. 机器学习之线性回归---logistic回归---softmax回归

    在本节中,我们介绍Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签 可以取两个以上的值. Softmax回归模型对于诸如MNIST手写数字分类等问题 ...

  4. 『科学计算』通过代码理解线性回归&Logistic回归模型

    sklearn线性回归模型 import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model de ...

  5. 机器学习实战之logistic回归分类

    利用logistic回归进行分类的主要思想:根据现有数据对分类边界建立回归公式,并以此进行分类. logistic优缺点: 优点:计算代价不高,易于理解和实现.缺点:容易欠拟合,分类精度可能不高. . ...

  6. 机器学习实战-logistic回归分类

    基于LR的回归分类实例 概念 前提理解: 机器学习的三个步骤:模型,损失函数(即样本误差),优化求解(通过损失函数,使得模型的样本误差最小或小于阈值,求出满足条件的参数,优化求解包括:最小二乘法,梯度 ...

  7. 吴裕雄 数据挖掘与分析案例实战(8)——Logistic回归分类模型

    import numpy as npimport pandas as pdimport matplotlib.pyplot as plt # 自定义绘制ks曲线的函数def plot_ks(y_tes ...

  8. 吴恩达-机器学习+Logistic回归分类方案

  9. 机器学习实战之Logistic回归

    Logistic回归一.概述 1. Logistic Regression 1.1 线性回归 1.2 Sigmoid函数 1.3 逻辑回归 1.4 LR 与线性回归的区别 2. LR的损失函数 3. ...

随机推荐

  1. ORACLE 分区表 相关视图

    1. 显示当前用户可访问的所有分区表信息﹕ ALL_PART_TABLES 2. 显示当前用户所有分区表的信息﹕ USER_PART_TABLES 3. 显示表分区信息 显示数据库所有分区表的详细分区 ...

  2. 5中IO模型整理总结

    1.5中IO模型: 阻塞I/O(blocking IO) 非阻塞I/O(noblocking IO) I/O复用    (IO multiplexing ) 信号驱动I/O (signal drive ...

  3. Leetcode 446.等差数列划分II 子序列

    等差数列划分II 子序列 如果一个数列至少有三个元素,并且任意两个相邻元素之差相同,则称该数列为等差数列. 例如,以下数列为等差数列: 1, 3, 5, 7, 9 7, 7, 7, 7 3, -1, ...

  4. 常用类--Date日期类,SimpleDateFormat日期格式类,Calendar日历类,Math数学工具类,Random随机数类

    Date日期类 Date表示特定的时间,精确到毫秒; 构造方法: public Data() public Date(long date) 常用方法: public long getTime() pu ...

  5. BZOJ4033 [HAOI2015]树上染色 【树形dp】

    题目 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并 将其他的N-K个点染成白色.将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间 ...

  6. jquery工具方法总结

    $.extend 对象合并,支持深拷贝 $.each 相当于array.each或object.each,可以遍历数组和对象 $.grep 相当于array.filter $.map 相当于array ...

  7. 升级springboot 2.x 踩过的坑——跨域导致session问题

    目前IT界主流前后端分离,但是在分离过程中一定会存在跨域的问题. 什么是跨域? 是指浏览器从一个域名的网页去请求另一个域名的资源时,域名.端口.协议任一不同,都是跨域. 做过web后台的童鞋都知道,跨 ...

  8. hdu 5578 Friendship of Frog

    题意:给定一行字符串(都是小写字母),每一个字符都代表一只青蛙以及其国籍,若字符串中出现两个字符相同,则这两个字符所代表的青蛙来自同一国度,可称之为好朋友. 现在需要找到距离最近的好朋友并输出他们的距 ...

  9. 【HDOJ2196】Computer(树的直径,树形DP)

    题意:给定一棵N个点树,询问这个树里面每个点到树上其他点的最大距离. n<=10000 思路:设f[u,1],f[u,2]为以U为根向下的最长与次长,g[u,1],g[u,2]为从哪个儿子转移来 ...

  10. input弹出的手机键盘搜索事件

    一.input的搜索框    在input标签里面把type设置为search就可以了.弹出的手机键盘回车键也会变成搜索或者是搜索的图标. <input id="search" ...