Assignment

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 3813    Accepted Submission(s): 1771

Problem Description
Tom owns a company and he is the boss. There are n staffs which are numbered from 1 to n in this company, and every staff has a ability. Now, Tom is going to assign a special task to some staffs who were in the same group. In a group, the difference of the ability of any two staff is less than k, and their numbers are continuous. Tom want to know the number of groups like this.
 
Input
In the first line a number T indicates the number of test cases. Then for each case the first line contain 2 numbers n, k (1<=n<=100000, 0<k<=10^9),indicate the company has n persons, k means the maximum difference between abilities of staff in a group is less than k. The second line contains n integers:a[1],a[2],…,a[n](0<=a[i]<=10^9),indicate the i-th staff’s ability.
 
Output
For each test,output the number of groups.
 
Sample Input
2
4 2
3 1 2 4
10 5
0 3 4 5 2 1 6 7 8 9
 
Sample Output
5
28

Hint

First Sample, the satisfied groups include:[1,1]、[2,2]、[3,3]、[4,4] 、[2,3]

题目链接:HDU 5289

题意就是求有多少个连续子串,这些子串均符合相邻数之间差的绝对值均小于k,直接两个for计数估计会T,因此可以枚举子串的左端点$i$,二分右端点$R$,使得$[i,R]$长度最大,那么这样一来这个子串是肯定符合的,实际上把右端点往左缩一个得到的小一个单位的子串也肯定是符合的,这样可以一直缩到区间变成$[i,i]$,因此每一次枚举得到的区间$[i,R]$可以产生$R-i+1$个符合题意的子串。

另外由于最大答案可以达到$\frac{(1+10^5)*10^5} {2}$因此要用long long

代码:

#include <stdio.h>
#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
typedef pair<int, int> pii;
typedef long long LL;
const double PI = acos(-1.0);
const int N = 1e5 + 7;
int arr[N], Max[N][20], Min[N][20]; void rmq_init(int l, int r)
{
int i, j;
for (i = l; i <= r; ++i)
Max[i][0] = Min[i][0] = arr[i];
for (j = 1; l + (1 << j) - 1 <= r; ++j)
{
for (i = l; i + (1 << j) - 1 <= r; ++i)
{
Max[i][j] = max(Max[i][j - 1], Max[i + (1 << (j - 1))][j - 1]);
Min[i][j] = min(Min[i][j - 1], Min[i + (1 << (j - 1))][j - 1]);
}
}
}
pii ST(int l, int r)
{
int k = log2(r - l + 1);
int Ma = max(Max[l][k], Max[r - (1 << k) + 1][k]);
int Mi = min(Min[l][k], Min[r - (1 << k) + 1][k]);
return pii(Ma, Mi);
}
int main(void)
{
int tcase;
scanf("%d", &tcase);
while (tcase--)
{
int n, k, i;
scanf("%d%d", &n, &k);
for (i = 1; i <= n; ++i)
scanf("%d", &arr[i]);
rmq_init(1, n); LL ans = 0;
for (i = 1; i <= n; ++i)
{
int L = i, R = n;
int idx = i;
while (L <= R)
{
int mid = MID(L, R);
pii temp = ST(i, mid);
if (temp.first - temp.second < k)
{
idx = mid;
L = mid + 1;
}
else
R = mid - 1;
}
ans += (LL)(idx - i + 1);
}
printf("%I64d\n", ans);
}
return 0;
}

HDU 5289 Assignment(二分+RMQ-ST)的更多相关文章

  1. HDU 5289——Assignment——————【RMQ+优化求解】

    Assignment Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total ...

  2. HDU 5289 Assignment [优先队列 贪心]

    HDU 5289 - Assignment http://acm.hdu.edu.cn/showproblem.php?pid=5289 Tom owns a company and he is th ...

  3. HDU 5289 Assignment (二分+区间最值)

    [题目链接]click here~~ [题目大意]: 给出一个数列,问当中存在多少连续子序列,子序列的最大值-最小值<k [思路]:枚举数列左端点.然后二分枚举右端点,用ST算法求区间最值.(或 ...

  4. HDU 5289 Assignment (ST算法区间最值+二分)

    题目链接:pid=5289">http://acm.hdu.edu.cn/showproblem.php?pid=5289 题面: Assignment Time Limit: 400 ...

  5. HDU - 5289 Assignment (RMQ+二分)(单调队列)

    题目链接: Assignment  题意: 给出一个数列,问其中存在多少连续子序列,使得子序列的最大值-最小值<k. 题解: RMQ先处理出每个区间的最大值和最小值(复杂度为:n×logn),相 ...

  6. hdu 5289 Assignment(2015多校第一场第2题)RMQ+二分(或者multiset模拟过程)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5289 题意:给你n个数和k,求有多少的区间使得区间内部任意两个数的差值小于k,输出符合要求的区间个数 ...

  7. HDU 5289 Assignment(2015 多校第一场二分 + RMQ)

    Assignment Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total ...

  8. hdu 5289 Assignment (ST+二分)

    Problem Description Tom owns a company and he is the boss. There are n staffs which are numbered fro ...

  9. HDU 5289 Assignment(多校2015 RMQ 单调(双端)队列)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5289 Problem Description Tom owns a company and he is ...

随机推荐

  1. 【BZOJ1040】[ZJOI2008] 骑士(基环外向树DP)

    点此看题面 大致题意: 给你一片基环外向树森林,如果选定了一个点,就不能选择与其相邻的节点.求选中点的最大权值和. 树形\(DP\) 此题应该是 树形\(DP\) 的一个升级版:基环外向树\(DP\) ...

  2. 使ListView控件中的选择项高亮显示

    实现效果: 知识运用: ListView控件的SelectedItems属性 //获取在ListView控件中被选中数据项的集合 public ListView.SelectedListViewIte ...

  3. 2018.6.13 Java语言基础复习总结

    Java语言基础与面向对象编程实践 第一章 初识Java 1.1机器语言 机器语言是指一台计算机全部的指令集合.机器语言室友0和1组成的二进制数,是一串串由0和1组成的指令序列,可将这些指令序列交给计 ...

  4. javaweb基础(29)_EL表达式

    一.EL表达式简介 EL 全名为Expression Language.EL主要作用: 1.获取数据 EL表达式主要用于替换JSP页面中的脚本表达式,以从各种类型的web域 中检索java对象.获取数 ...

  5. python生成随机数

    import random rnd=rand.uniform(0,10)

  6. dom节点获取文本的方式

    1. innerHTML innerHTML可以作为获取文本的方法也可以作为修改文本内容的方法 element.innerHTML 会直接返回element节点下所有的HTML化的文本内容 <b ...

  7. 爬虫学习(八)——带cookie的网页进行爬取

    # 前提:# # 通常,很多网站需要登录才能进行浏览,所以在爬取这些网站时,也需要进行登录,并拿取登录时的cookie# # 登录网页,服务器会给客户端一个牌子cookie# # 访问登录页面时,带着 ...

  8. 三十二、MySQL 导出数据

    MySQL 导出数据 MySQL中你可以使用SELECT...INTO OUTFILE语句来简单的导出数据到文本文件上. 使用 SELECT ... INTO OUTFILE 语句导出数据 以下实例中 ...

  9. 第7章 数据库访问与ORM 慕课网微信小程序开发学习笔记

    第7章 数据库访问与ORM https://coding.imooc.com/learn/list/97.html 目录: 7-1 数据库操作三种方式之原生SQL 19:09 7-2 从一个错误了解E ...

  10. 809. Expressive Words

    https://leetcode.com/problems/expressive-words/description/ class Solution { public: int expressiveW ...