BZOJ2806 [Ctsc2012]Cheat 【后缀自动机 + 二分 + 单调队列优化DP】
题目
输入格式
第一行两个整数N,M表示待检查的作文数量,和小强的标准作文库
的行数
接下来M行的01串,表示标准作文库
接下来N行的01串,表示N篇作文
输出格式
N行,每行一个整数,表示这篇作文的Lo 值。
输入样例
1 2
10110
000001110
1011001100
输出样例
4
提示
输入文件不超过1100000字节
注意:题目有改动,可识别的长度不小于90%即可,而不是大于90%
题解
想来练练SAM,却跪在了单调队列DP上。。。QAQ
根据后缀数组进行多串匹配时,用一个未出现的字符将各串连接起来形成一个串
我们可以照搬到后缀自动机来,对m个模板串建立后缀自动机
此时我们可以在后缀自动机上走一遍求出匹配串每个位置为结尾所能匹配的最大长度【见代码init】
记为len[i],即表示匹配的子串\([i - len[i] + 1,i]\)可以与模板串匹配
有了这些,我们如何计算\(L_0\)?
仔细思考发现L具有单调性,即在长度至少为L时选择的最小切割方案下,对长度小于L的限制仍然满足,长度小于L的可以照搬L的切割方法而满足条件
这个时候我们就可以二分了
对于长度L,我们可以用DP检验,令f[i]表示前i个字符在L限制下能匹配的最大长度
首先f[i]至少等于f[i - 1],因为i可以单独被化为出来而转移到f[i - 1]【也就是说f[i]单调不下降,这个待会会用到】
我们有状态转移方程:\(f[i] = max{f[j] + i - j},j\in [i - len[i],i - L]\)
解释:由于L的限制,要切割出以i结尾产生贡献的区间,必须在i - L及之前,而i最多匹配到i - len[i] + 1,所以\(j\in [i - len[i],i - L]\)
最后的匹配长度就是i割出这段的长度 + f[j]
这样做是\(O(n^2logn)\)的,不能满足题意
考虑优化
我们将方程变形\(f[i] - i = f[j] - j\),左边是只与i有关的量,与决策无关
右边是只与j有关的量,由f[j]的定义,f[j] - j表示前j个没匹配的个数【负数】,由于没匹配的个数不会变少,所以f[j] - j单调递减
也就是说决策具有单调性,且只与j有关,可以采用单调队列优化
【一定要好好写队列QAQ,WA了几发】
呼啦啦~~~搞完了【CTSC的题目哇。】
#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 3000005,maxm = 100005,INF = 1000000000;
int pre[maxn],ch[maxn][3],step[maxn],cnt,last;
char s[maxn];
void ins(int x){
int p = last,np = ++cnt;
last = np; step[np] = step[p] + 1;
while (p && !ch[p][x]) ch[p][x] = np,p = pre[p];
if (!p) pre[np] = 1;
else {
int q = ch[p][x];
if (step[q] == step[p] + 1) pre[np] = q;
else {
int nq = ++cnt; step[nq] = step[p] + 1;
memcpy(ch[nq],ch[q],sizeof(ch[q]));
pre[nq] = pre[q]; pre[q] = pre[np] = nq;
while (ch[p][x] == q) ch[p][x] = nq,p = pre[p];
}
}
}
int q[maxn],head,tail,f[maxn],N,len[maxn];
bool check(int L){
head = tail = f[0] = 0;
for (int i = 1; i <= N; i++){
f[i] = f[i - 1];
int l = i - len[i],r = i - L;
if (r >= 0){
while (head < tail && f[q[tail - 1]] - q[tail - 1] < f[r] - r) tail--;
q[tail++] = r;
}
while (head < tail && q[head] < l) head++;
if (head < tail) f[i] = max(f[i],f[q[head]] - q[head] + i);
}
return 10 * f[N] >= 9 * N;
}
void init(){
int u = 1,id,ans = 0;
for (int i = 1; i <= N; i++){
id = s[i] - '0';
if (ch[u][id]) len[i] = ++ans,u = ch[u][id];
else {
while (u != 1 && !ch[u][id]) u = pre[u];
if (u == 1) len[i] = ans = 0;
else len[i] = ans = step[u] + 1,u = ch[u][id];
}
}
}
int main(){
int n,m; last = cnt = 1;
scanf("%d%d",&n,&m);
while (m--){
scanf("%s",s); N = strlen(s);
for (int i = 0; i < N; i++) ins(s[i] - '0');
ins(2);
}
while (n--){
scanf("%s",s + 1); N = strlen(s + 1);
init();
int l = 0,r = N,mid,ans = 0;
while (l <= r){
mid = l + r >> 1;
if (check(mid)) l = mid + 1,ans = mid;
else r = mid - 1;
}
printf("%d\n",ans);
}
return 0;
}
BZOJ2806 [Ctsc2012]Cheat 【后缀自动机 + 二分 + 单调队列优化DP】的更多相关文章
- BZOJ 2806 [Ctsc2012]Cheat (后缀自动机+二分+单调队列+dp)
题目大意: 给你一堆模式串和文本串 对于每个文本串,我们可以把它不可重叠地拆分成很多子串,如果拆分出的串作为子串出现在了任何一个模式串中,我们称它是“眼熟的”,我们必须保证“眼熟的”子串总长度不小于文 ...
- 【BZOJ2806】[Ctsc2012]Cheat 广义后缀自动机+二分+单调队列优化DP
[BZOJ2806][Ctsc2012]Cheat Description Input 第一行两个整数N,M表示待检查的作文数量,和小强的标准作文库的行数接下来M行的01串,表示标准作文库接下来N行的 ...
- BZOJ2806: [Ctsc2012]Cheat(广义后缀自动机,单调队列优化Dp)
Description Input 第一行两个整数N,M表示待检查的作文数量,和小强的标准作文库的行数接下来M行的01串,表示标准作文库接下来N行的01串,表示N篇作文 Output N行,每行一个整 ...
- [BZOJ1044][HAOI2008]木棍分割 二分 + 单调队列优化dp + 滚动数组优化dp
Description 有n根木棍, 第i根木棍的长度为Li,n根木棍依次连结了一起, 总共有n-1个连接处. 现在允许你最多砍断m个连接处, 砍完后n根木棍被分成了很多段,要求满足总长度最大的一段长 ...
- 2018.09.26洛谷P3957 跳房子(二分+单调队列优化dp)
传送门 表示去年考普及组的时候失了智,现在看来并不是很难啊. 直接二分答案然后单调队列优化dp检验就行了. 注意入队和出队的条件. 代码: #include<bits/stdc++.h> ...
- [bzoj2806][Ctsc2012]Cheat(后缀自动机(SAM)+二分答案+单调队列优化dp)
偷懒直接把bzoj的网页内容ctrlcv过来了 2806: [Ctsc2012]Cheat Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 1943 ...
- 单调队列优化DP,多重背包
单调队列优化DP:http://www.cnblogs.com/ka200812/archive/2012/07/11/2585950.html 单调队列优化多重背包:http://blog.csdn ...
- bzoj1855: [Scoi2010]股票交易--单调队列优化DP
单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...
- hdu3401:单调队列优化dp
第一个单调队列优化dp 写了半天,最后初始化搞错了还一直wa.. 题目大意: 炒股,总共 t 天,每天可以买入na[i]股,卖出nb[i]股,价钱分别为pa[i]和pb[i],最大同时拥有p股 且一次 ...
随机推荐
- MAC之tar解压与压缩gz打包命令
tar [-cxtzjvfpPN] 文件与目录 ....参数:-c :建立一个压缩文件的参数指令(create 的意思):-x :解开一个压缩文件的参数指令!-t :查看 tarfile 里面的文件! ...
- React后台管理系统-登录页面
登录页面 <div className="col-md-4 col-md-offset-4"> <div className=&qu ...
- 第31题:LeetCode946. Validate Stack Sequences验证栈的序列
题目 给定 pushed 和 popped 两个序列,只有当它们可能是在最初空栈上进行的推入 push 和弹出 pop 操作序列的结果时,返回 true:否则,返回 false . 示例 1: 输入: ...
- https://www.atlassian.com
https://www.atlassian.com 解决:confluence 5.9.4 一次性恢复30个插件 - 简书 https://www.jianshu.com/p/c32d8aa739b8 ...
- 笔记-python-反射
笔记-python-反射 1. 反射 在很多地方看到自省和反射,很晕菜,整理了一下相关文档,加深了理解. 自省和反射其实说的是一件事,核心操作是根据输入去对象(模块)中调用(查找/获取/删除/添加)成 ...
- AndroidStudio和IDEA的初始设置
一.第一次安装: Android Studio安装完成后,第一次启动AS前,为了避免重新下载新版本的SDK,需要做如下操作: AS启动前,打开安装目录,请先将bin目录的idea.properties ...
- SpringMvc路径参数和url的两种实现方式
我们经常采用的SpringMvc路径参数经常的操作是在url后面采用?参数名=值1&参数名2=值2这种方式实现 RequestMapping的作用: 1)当作用在controller时,我们通 ...
- 【NopCommerce 3.1】asp.net mvc 利用jQuery from.js上传用户头像
纯代码不解释. 在CusotmerControllers中添加上传方法 /// <summary> /// ajax上传用户头像 /// </summary> /// < ...
- Django 四——ModelForm用法
内容概要: 1.新增数据库表中数据 2.更新数据库表中数据 Django的ModelForm Django中内置了Form和Model两个类,有时候页面的表单form类与Model类是一一对应,因此分 ...
- vue2.x生命周期
vue2.x生命周期 1. beforeCreate 在实例初始化之后,数据观测(data observer) 和 event/watcher 事件配置之前被调用. 2. created 实例已经创建 ...