[HNOI2007][bzoj1187] 神奇游乐园 [插头dp]
题面:
给定一个四联通棋盘图,每个格子有权值,求一条总权值最大的回路
思路:
棋盘?
回路?
n,m<=10?
当然是插头dp啦~\(≧▽≦)/~
然后发现这道题并不是哈密顿回路了......需要考虑一下终止条件的不同,对比URAL1519
诚然,回路问题中依然可以用括号表示法来压缩状态,但是此时形成回路、统计答案的就不仅仅在最后一个非障碍格子才可以,而是任何时候,只要状态中只剩下一对左右插头满足条件(看不懂这里的可以去上面那道题看看)
同时请注意,这道题统计的是最值、不是和值
同时请注意,这题可能会爆longlong......我丧病地开了__int128,避免了高精度的地狱
Code:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
#define hash deep_dark_fantasy
#define inf 1e9
using namespace std;
inline int read(){
int re=,flag=;char ch=getchar();
while(ch>''||ch<''){
if(ch=='-') flag=-;
ch=getchar();
}
while(ch>=''&&ch<='') re=(re<<)+(re<<)+ch-'',ch=getchar();
return re*flag;
}
int n,m,x[][],cur,pre,ex,ey;
int st[][];ll ans[][],re;
int tot[],bit[],state[],st_tot,hash=;
struct edge{
int to,next;
}a[];
void insert(int sta,ll val){
int p=sta%hash,i;
for(i=state[p];i;i=a[i].next){
if(st[cur][a[i].to]==sta){
ans[cur][a[i].to]=max(ans[cur][a[i].to],val);return;
}
}
tot[cur]++;
a[++st_tot].to=tot[cur];
a[st_tot].next=state[p];
state[p]=st_tot;st[cur][tot[cur]]=sta;ans[cur][tot[cur]]=val;
}
void dp(){
int i,j,k,l,now,down,right;ll val;re=-inf;
cur=;tot[cur]=;ans[cur][]=;st[cur][]=;
for(i=;i<=n;i++){
for(j=;j<=tot[cur];j++) st[cur][j]<<=;
for(j=;j<=m;j++){
pre=cur;cur^=;tot[cur]=;st_tot=;memset(state,,sizeof(state));
for(k=;k<=tot[pre];k++){
now=st[pre][k];val=ans[pre][k];
right=(now>>bit[j-])%;down=(now>>bit[j])%;
if(!down&&!right){
insert(now,val);
if(j!=m)
insert(now+(<<bit[j-])+((<<bit[j])<<),val+x[i][j]);
}
if(down&&!right){
insert(now-down*(<<bit[j])+down*(<<bit[j-]),val+x[i][j]);
if(j!=m)insert(now,val+x[i][j]);
}
if(right&&!down){
insert(now,val+x[i][j]);
if(j!=m)
insert(now+right*(<<bit[j])-right*(<<bit[j-]),val+x[i][j]);
}
if(right==&&down==){
int cnt=;
for(l=j+;l<=m;l++){
if((now>>bit[l])%==) cnt++;
if((now>>bit[l])%==) cnt--;
if(!cnt){
insert(now-(<<bit[l])-(<<bit[j])-(<<bit[j-]),val+x[i][j]);
break;
}
}
}
if(right==&&down==){
int cnt=;
for(l=j-;l>=;l--){
if((now>>bit[l])%==) cnt--;
if((now>>bit[l])%==) cnt++;
if(!cnt){
insert(now+(<<bit[l])-((<<bit[j])<<)-((<<bit[j-])<<),val+x[i][j]);
break;
}
}
}
if(right==&&down==){
insert(now-((<<bit[j-])<<)-(<<bit[j]),val+x[i][j]);
}
if(right==&&down==){
if((now==(<<bit[j-])+((<<bit[j])<<))&&(val+x[i][j]>re)){
re=val+x[i][j];
}
}
}
}
}
}
int main(){
int i,j;
n=read();m=read();
for(i=;i<=;i++) bit[i]=(i<<);
for(i=;i<=n;i++) for(j=;j<=m;j++) x[i][j]=read();
dp();
printf("%lld",re);
}
[HNOI2007][bzoj1187] 神奇游乐园 [插头dp]的更多相关文章
- 【BZOJ1187】[HNOI2007]神奇游乐园 插头DP
[BZOJ1187][HNOI2007]神奇游乐园 Description 经历了一段艰辛的旅程后,主人公小P乘坐飞艇返回.在返回的途中,小P发现在漫无边际的沙漠中,有一块狭长的绿地特别显眼.往下仔细 ...
- bzoj 1187: [HNOI2007]神奇游乐园 插头dp
1187: [HNOI2007]神奇游乐园 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 668 Solved: 337[Submit][Statu ...
- [BZOJ1187]神奇游乐园(插头DP)
Description 题意给定一个矩阵,每个格子有权值,在[-1000.1000]内,求一条回路使得回路经过权值和最大,每个格子最多经过一次 2≤n≤100,2≤m≤6 Code #include ...
- [bzoj1187][HNOI2007]神奇游乐园_插头dp
bzoj-1187 HNOI-2007 神奇游乐园 题目大意:经历了一段艰辛的旅程后,主人公小P乘坐飞艇返回.在返回的途中,小P发现在漫无边际的沙漠中,有一块狭长的绿地特别显眼.往下仔细一看,才发现这 ...
- BZOJ1187 [HNOI2007]神奇游乐园(插头dp)
麻麻我会写插头dp了! 推荐陈丹琦论文:https://wenku.baidu.com/view/3e90d32b453610661ed9f4bd.html 破题调一年 #include <cs ...
- [HNOI2007]神奇游乐园(插头DP)
题意:n*m的矩阵内值有正有负,找一个四连通的简单环(长度>=4),使得环上值的和最大. 题解:看到2<=m<=6和简单环,很容易想到插头DP,设f[i][j][k]表示轮廓线为第i ...
- 洛谷P3190 [HNOI2007]神奇游乐园(插头dp)
传送门 大概是算第一道自己做出来的插头dp? (虽然都是照着抄板子的) (虽然有个地方死活没调出来最后只能看题解才发现自己错在哪里的) 我就当你们都会插头dp了…… 因为必须得是一条路径,所以扫描线上 ...
- [bzoj1187][HNOI2007]神奇游乐园
来自FallDream的博客,未经允许,请勿转载,谢谢, 经历了一段艰辛的旅程后,主人公小P乘坐飞艇返回.在返回的途中,小P发现在漫无边际的沙漠中,有一块狭长的绿地特别显眼.往下仔细一看,才发现这是一 ...
- 【bzoj1187】 HNOI2007—神奇游乐园
http://www.lydsy.com/JudgeOnline/problem.php?id=1187 (题目链接) 题意 一个$n*m$的矩阵,其中每一个位置有一个权值,求一条回路使得经过的位置的 ...
随机推荐
- 魅族MX3 Flyme3.0找回手机功能支持远程拍照密码错两次自动拍照
进入Flyme页面(http://app.meizu.com/),选择“查找手机”即可进行查找自己登记的魅族系列手机. 如果您在一个账号下登记过N多魅族系列手机,那么都是可以进行查找的,参见下图 魅族 ...
- 详解JVM工作原理和特点
在我们运行和调试Java程序的时候,经常会提到一个JVM的概念.本文将为大家讲解JVM工作原理和特点,希望对大家有所帮助. AD:网+线下沙龙 | 移动APP模式创新:给你一个做APP的理由>& ...
- ASIHTTPRequest的使用
本文转自csdn ASIHTTPRequest对CFNetwork API进行了封装,并且使用起来非常简单,用Objective-C编写,可以很好的应用在Mac OS X系统和iOS平台的应用程序中. ...
- 洛谷P2908 [USACO08OPEN]文字的力量Word Power
题目描述 Farmer John wants to evaluate the quality of the names of his N (1 <= N <= 1000) cows. Ea ...
- shell脚本中case的用法
shell脚本中case选择语句可以结合read指令实现比较好的交互应答操作,case接收到read指令传入的一个或多个参数,然后case根据参数做选择操作. case的语法如下 case $char ...
- windows下简单使用pip
1. 在python官网上下载python时会自带pip,并且在安装Python时若未取消会默认一并安装 2. 找出pip.exe所在位置, 3. 右击此电脑,点击属性 4. 高级系统设置 5. 点击 ...
- sql 参数化查询
在初次接触sql时,笔者使用的是通过字符串拼接的方法来进行sql查询,但这种方法有很多弊端 其中最为明显的便是导致了sql注入. 通过特殊字符的书写,可以使得原本正常的语句在sql数据库里可编译, ...
- 二十八、MySQL 元数据
MySQL 元数据 你可能想知道MySQL以下三种信息: 查询结果信息: SELECT, UPDATE 或 DELETE语句影响的记录数. 数据库和数据表的信息: 包含了数据库及数据表的结构信息. M ...
- 使用natapp本地映射外网服务
官网:https://natapp.cn/ 软件很好用,这对于前端工程师来说,有了这个工具就很爽了,当你的领导或者不在你公司内网范围内的人,想要看你的页面效果,就很简单了. 详细的不用更多介绍,直接去 ...
- Python知识点入门笔记——特色数据类型(列表)
Python中提供了列表这种数据类型(类型为list)来存储多个值构成的序列 用逗号将不同数据分隔开,整体放在一个方括号[]里就创建了列表 列表中的数据类型可以是相同的,也可以是不同的 列表中还可以嵌 ...