Eddy's digital Roots

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 5745    Accepted Submission(s): 3160

Problem Description
The digital root of a positive integer is found by summing the digits of the integer. If the resulting value is a single digit then that digit is the digital root. If the resulting value contains two or more digits, those digits are
summed and the process is repeated. This is continued as long as necessary to obtain a single digit.

For example, consider the positive integer 24. Adding the 2 and the 4 yields a value of 6. Since 6 is a single digit, 6 is the digital root of 24. Now consider the positive integer 39. Adding the 3 and the 9 yields 12. Since 12 is not a single digit, the process
must be repeated. Adding the 1 and the 2 yeilds 3, a single digit and also the digital root of 39.

The Eddy's easy problem is that : give you the n,want you to find the n^n's digital Roots.

 
Input
The input file will contain a list of positive integers n, one per line. The end of the input will be indicated by an integer value of zero. Notice:For each integer in the input n(n<10000).
 
Output
Output n^n's digital root on a separate line of the output.
 
Sample Input
2
4
0
 
Sample Output
4
4

主要公式:n的数根(各位数字之和)等于n%9,因此每次都相乘并取模9。另外这题忘记加&&n让我WA了三次,无语

另外:

1.对于同一个除数,两个数之和(或差)与它们的余数之和(或差)同余。

2.对于同一个除数,两个数的乘积与它们余数的乘积同余。

3.对于同一个除数,如果有两个整数同余,那么它们的差就一  定能被这个除数整除。

4.对于同一个除数,如果两个数同余,那么他们的乘方仍然同余。

代码:

#include<iostream>
#include<algorithm>
using namespace std;
int main(void)
{
int n;
while (cin>>n&&n)
{
int sum=1;
for (int i=1; i<=n; i++)
sum=sum*n%9;
if(sum==0)
cout<<9<<endl;//while已经判断过0,因此这里的0实际是9.因此要输出9
else
cout<<sum<<endl;
}
return 0;
}

HDU——1163Eddy's digital Roots(九余数定理+同余定理)的更多相关文章

  1. HDOJ 1163 Eddy's digital Roots 九余数定理+简单数论

    我在网上看了一些大牛的题解,有些知识点不是太清楚, 因此再次整理了一下. 转载链接: http://blog.csdn.net/iamskying/article/details/4738838 ht ...

  2. HDU-1163Eddy's digital Roots,九余定理的另一种写法!

    下午做了NYOJ-424Eddy's digital Roots后才正式接触了九余定理,不过这题可不是用的九余定理做的.网上的博客千篇一律,所以本篇就不发篇幅过多介绍九余定理了: 但还是要知道什么是九 ...

  3. Hdu1163 Eddy's digitai Roots(九余数定理)

    题目大意: 给定一个正整数,根据一定的规则求出该数的“数根”,其规则如下: 例如给定 数字 24,将24的各个位上的数字“分离”,分别得到数字 2 和 4,而2+4=6: 因为 6 < 10,所 ...

  4. hdoj-1013-Digital Roots(九余数定理)

    题目链接 #include <iostream> using namespace std; int main() { string a; int b; ") { b = ; ;i ...

  5. 51nod 1433 0和5【数论/九余定理】

    1433 0和5 题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题  收藏  关注 小K手中有n张牌,每张牌上有一个一位数的数,这个 ...

  6. hdu 1163 Eddy's digital Roots 【九余数定理】

    http://acm.hdu.edu.cn/showproblem.php?pid=1163 九余数定理: 如果一个数的各个数位上的数字之和能被9整除,那么这个数能被9整除:如果一个数各个数位上的数字 ...

  7. HDU 1013 Digital Roots(字符串,大数,九余数定理)

    Digital Roots Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  8. HDOJ 1163 Eddy's digital Roots(九余数定理的应用)

    Problem Description The digital root of a positive integer is found by summing the digits of the int ...

  9. Eddy's digital Roots(九余数定理)

    Eddy's digital Roots Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Oth ...

随机推荐

  1. java基础—equals方法

    一.equals方法介绍 1.1.通过下面的例子掌握equals的用法 1 package cn.galc.test; 2 3 public class TestEquals { 4 public s ...

  2. React组件自适应窗口宽高

    很多时候我们需要组件能够根据窗口变化改变宽高,有时候可以使用css,有时候需要随数据调整则使用js计算. 比如说,当我们在页面中放置一个iframe时,我们希望它的宽高随着其父元素or窗口的变化而变化 ...

  3. CentOS 编译安装PHP5.6(7以上也通用)

    由于公司有新服务器需要构建一套LNMP平台,且需要编译安装各个部件,所以记录下此文章. 这是安装PHP涉及到的软件包(可以自行决定使用哪个版本): ├── libiconv-1.15.tar.gz ├ ...

  4. c++结构体双关键字排序

    #include<bits/stdc++.h> using namespace std; struct node{ int l,r; }num[]; int w_comp(const no ...

  5. 使用三层交换配置DHCP为不同VLAN分配IP地址

    三层交换的原理以及DHCP的原理,作者在这里就不详细的解释了,在这里通过一个案例来了解使用三层交换做DHCP服务器,并为不同网段分配IP地址.在生产环境中,使用路由器或交换机做DHCP服务器要常见一些 ...

  6. 补之前 如何改变jupyter打开文件的路径

    目录 如何改变jupyter打开文件的路径 第一种方法: 第二种方法 第三种方法 如何改变jupyter打开文件的路径 当我们直接打开jupyter时,直接加载的是我们的C盘文件 现在我们想打开其他盘 ...

  7. drf 认证功能

    drf(django rest-framework)认证组件 复习 HyperlinkedIdentityField ​```python 功能:快速生成连接 1. publish = seriali ...

  8. poj-2533 longest ordered subsequence(动态规划)

    Time limit2000 ms Memory limit65536 kB A numeric sequence of ai is ordered if a1 < a2 < ... &l ...

  9. cf 1006E

    #include <iostream> #include <cstdio> #include <cstring> #include <string> # ...

  10. Linux学习-SELinux 初探

    什么是 SELinux 什么是 SELinux 呢?其实他是『 Security Enhanced Linux 』的缩写,字面上的意义就是安全强化的 Linux 之意! 当初设计的目标:避免资源的误用 ...