[CODEVS1916] 负载平衡问题(最小费用最大流)
输入所有 a[i],求出平均值 sum,每个 a[i] -= sum
那么如果 a[i] > 0,从 s 向 i 连一条容量为 a[i] 费用为 0 的有向边
如果 a[i] < 0,从 i 向 t 连一条容量为 -a[i] 费用为 0 的有向边
每个点 i 和它相邻的两个点连一条容量为 INF 费用为 1 的有向边
求出最小费用最大流即为答案
——代码
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#define INF 1e9
#define N 1000001
#define min(x, y) ((x) < (y) ? (x) : (y)) int n, cnt, s, t;
int a[], dis[N], pre[N];
int head[N], to[N << ], val[N << ], cost[N << ], next[N << ];
bool vis[N]; inline int read()
{
int x = , f = ;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -;
for(; isdigit(ch); ch = getchar()) x = (x << ) + (x << ) + ch - '';
return x * f;
} inline void add(int x, int y, int z, int c)
{
to[cnt] = y;
val[cnt] = z;
cost[cnt] = c;
next[cnt] = head[x];
head[x] = cnt++;
} inline bool spfa()
{
int i, u, v;
std::queue <int> q;
memset(vis, , sizeof(vis));
memset(pre, -, sizeof(pre));
memset(dis, / , sizeof(dis));
q.push(s);
dis[s] = ;
while(!q.empty())
{
u = q.front(), q.pop();
vis[u] = ;
for(i = head[u]; i ^ -; i = next[i])
{
v = to[i];
if(val[i] && dis[v] > dis[u] + cost[i])
{
dis[v] = dis[u] + cost[i];
pre[v] = i;
if(!vis[v])
{
q.push(v);
vis[v] = ;
}
}
}
}
return pre[t] ^ -;
} inline int dinic()
{
int i, d, sum = ;
while(spfa())
{
d = INF;
for(i = pre[t]; i ^ -; i = pre[to[i ^ ]]) d = min(d, val[i]);
for(i = pre[t]; i ^ -; i = pre[to[i ^ ]])
{
val[i] -= d;
val[i ^ ] += d;
}
sum += dis[t] * d;
}
return sum;
} int main()
{
int i, j, x, sum = ;
n = read();
s = , t = n + ;
memset(head, -, sizeof(head));
for(i = ; i <= n; i++)
{
a[i] = read();
sum += a[i];
}
sum /= n;
for(i = ; i <= n; i++) a[i] -= sum;
for(i = ; i <= n; i++)
{
if(a[i] > ) add(s, i, a[i], ), add(i, s, , );
if(a[i] < ) add(i, t, -a[i], ), add(t, i, , );
if(i == )
{
add(i, , INF, ), add(, i, , -);
add(i, n, INF, ), add(n, i, , -);
}
else if(i == n)
{
add(i, n - , INF, ), add(n - , i, , -);
add(i, , INF, ), add(, i, , -);
}
else
{
add(i, i + , INF, ), add(i + , i, , -);
add(i, i - , INF, ), add(i - , i, , -);
}
}
printf("%d\n", dinic());
return ;
}
[CODEVS1916] 负载平衡问题(最小费用最大流)的更多相关文章
- P4016 负载平衡问题(最小费用最大流)
P4016 负载平衡问题 题目描述 GG 公司有 nn 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 nn 个仓库的库存数量相同.搬运货物时,只能在相邻的仓库之间搬 ...
- 洛谷P4016 负载平衡问题(最小费用最大流)
题目描述 GG 公司有 nn 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 nn 个仓库的库存数量相同.搬运货物时,只能在相邻的仓库之间搬运. 输入输出格式 输入格 ...
- Libre 6013 「网络流 24 题」负载平衡 (网络流,最小费用最大流)
Libre 6013 「网络流 24 题」负载平衡 (网络流,最小费用最大流) Description G 公司有n 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使n ...
- LibreOJ #6013. 「网络流 24 题」负载平衡 最小费用最大流 供应平衡问题
#6013. 「网络流 24 题」负载平衡 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 题目描述 ...
- 洛谷 P4016 负载平衡问题 【最小费用最大流】
求出平均数sum,对于大于sum的点连接(s,i,a[i]-sum,0),表示这个点可以流出多余的部分,对于小于sum的点连接(i,t,sum-a[i],0)表示这个点可以接受少的部分,然后每个点向相 ...
- 【PowerOJ1754&网络流24题】负载平衡问题(费用流)
题意: 思路: [问题分析] 转化为供求平衡问题,用最小费用最大流解决. [建模方法] 首先求出所有仓库存货量平均值,设第i个仓库的盈余量为A[i],A[i] = 第i个仓库原有存货量 - 平均存货量 ...
- BZOJ-1061 志愿者招募 线性规划转最小费用最大流+数学模型 建模
本来一眼建模,以为傻逼题,然后发现自己傻逼...根本没想到神奇的数学模型..... 1061: [Noi2008]志愿者招募 Time Limit: 20 Sec Memory Limit: 162 ...
- BZOJ 1061 志愿者招募(最小费用最大流)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1061 题意:申奥成功后,布布经过不懈努力,终于 成为奥组委下属公司人力资源部门的主管.布 ...
- [板子]最小费用最大流(Dijkstra增广)
最小费用最大流板子,没有压行.利用重标号让边权非负,用Dijkstra进行增广,在理论和实际上都比SPFA增广快得多.教程略去.转载请随意. #include <cstdio> #incl ...
随机推荐
- Java 设计模式之中介者模式
本文继续23种设计模式系列之中介者模式. 定义 用一个中介者对象封装一系列的对象交互,中介者使各对象不需要显示地相互作用,从而使耦合松散,而且可以独立地改变它们之间的交互. 角色 抽象中介者: ...
- 摘自 dd大牛的《背包九讲》
P01: 01背包问题 题目 有N件物品和一个容量为V的背包.第i件物品的费用是c[i],价值是w[i].求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大. 基本思路 这是最 ...
- solver
slover中有type,用于优化算法的选择,有6种: Stochastic Gradient Descent (type: “SGD”), AdaDelta (type: “AdaDelta”), ...
- java中求几个字符串的最大公共子串 使用了比较器Comparator
package com.swift; import java.util.ArrayList; import java.util.Collections; import java.util.Compar ...
- module.exports exports 和export export default
首先可以知道的是这是两组不同模块规范. module.exports 是CommonJS模块规范,通过require 导入 a.js: var x = 'hello' module.exports.x ...
- 二叉搜索树详解(Java实现)
1.二叉搜索树定义 二叉搜索树,是指一棵空树或者具有下列性质的二叉树: 若任意节点的左子树不空,则左子树上所有节点的值均小于它的根节点的值: 若任意节点的右子树不空,则右子树上所有节点的值均大于它的根 ...
- MYSQL存储过程,函数,光标
存储过程 MySQL中,创建存储过程的基本形式如下: CREATE PROCEDURE sp_name ([proc_parameter[,...]]) [characteristic ...] ro ...
- Anaconda的安装、使用以及与PyCharm的链接
初学Python的盆友们是否有这样的疑惑: 选择Python2还是Python3呢?(后者并不完全兼容前者) 听说两者可以同时安装,那怎么管理呢? Python那么丰富的第三方库,一个一个装太麻烦啦 ...
- CentOS 7 配置OpenCL环境(安装NVIDIA cuda sdk、Cmake、Eclipse CDT)
序 最近需要在Linux下进行一个OpenCL开发的项目,现将开发环境的配置过程记录如下,方便查阅. 完整的环境配置需要以下几个部分: 安装一个OpenCL实现,基于硬件,选择NVIDIA CUDA ...
- NXP低功耗蓝牙集成芯片QN9080C的时钟配置
/*************************************************************************************************** ...