题意:一棵有N个结点的树,每个节点上有权值c[i]

需要选出若干结点,对于任意结点他的所有祖先都被选取且选取总个数不能超过lim

在此前提下使权值和最大

n,lim<=3000

思路:WA了1次才过真是傻

f[i,j]表示选取I为根,取J个结点的最大值

用类似背包的转移,注意dp[u,i]I不能取0,因为U必取

 var dp:array[..,..]of longint;
c:array[..]of longint;
head,vet,next,flag,de:array[..]of longint;
n,lim,tot,i,j,ans,x,y:longint; procedure add(a,b:longint);
begin
inc(tot);
next[tot]:=head[a];
vet[tot]:=b;
head[a]:=tot;
end; function min(x,y:longint):longint;
begin
if x<y then exit(x);
exit(y);
end; function max(x,y:longint):longint;
begin
if x>y then exit(x);
exit(y);
end; procedure dfs(u:longint);
var e,v,i,j:longint;
begin
flag[u]:=; de[u]:=;
e:=head[u]; dp[u,]:=; dp[u,]:=c[u]; e:=head[u];
while e<> do
begin
v:=vet[e];
if flag[v]= then
begin
dfs(v);
de[u]:=de[u]+de[v];
for i:=min(lim,de[u]) downto do
for j:= to min(lim,de[v]) do
if i-j>= then dp[u,i]:=max(dp[u,i],dp[u,i-j]+dp[v,j]);
end;
e:=next[e];
end;
{write(u,' ');
for i:=0 to lim do write(dp[u,i],' ');
writeln; }
end; begin
assign(input,'1.in'); reset(input);
assign(output,'1.out'); rewrite(output);
readln(n,lim);
for i:= to n do read(c[i]);
for i:= to n- do
begin
readln(x,y);
add(x,y);
add(y,x);
end;
for i:= to n do
for j:= to lim do dp[i,j]:=-maxlongint div ;
dfs();
ans:=-maxlongint;
for j:= to min(de[],lim) do ans:=max(ans,dp[,j]);
writeln(ans);
close(input);
close(output);
end.

【NOIP2016练习】T3 tree (树形DP)的更多相关文章

  1. 熟练剖分(tree) 树形DP

    熟练剖分(tree) 树形DP 题目描述 题目传送门 分析 我们设\(f[i][j]\)为以\(i\)为根节点的子树中最坏时间复杂度小于等于\(j\)的概率 设\(g[i][j]\)为当前扫到的以\( ...

  2. hdu-5834 Magic boy Bi Luo with his excited tree(树形dp)

    题目链接: Magic boy Bi Luo with his excited tree Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: ...

  3. CF 461B Appleman and Tree 树形DP

    Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other ...

  4. codeforces 161D Distance in Tree 树形dp

    题目链接: http://codeforces.com/contest/161/problem/D D. Distance in Tree time limit per test 3 secondsm ...

  5. hdu6035 Colorful Tree 树形dp 给定一棵树,每个节点有一个颜色值。定义每条路径的值为经过的节点的不同颜色数。求所有路径的值和。

    /** 题目:hdu6035 Colorful Tree 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6035 题意:给定一棵树,每个节点有一个颜色值.定 ...

  6. 5.10 省选模拟赛 tree 树形dp 逆元

    LINK:tree 整场比赛看起来最不可做 确是最简单的题目. 感觉很难写 不过单独考虑某个点 容易想到树形dp的状态. 设f[x]表示以x为根的子树内有黑边的方案数. 白边方案只有一种所以不用记录. ...

  7. Codeforces Round #263 Div.1 B Appleman and Tree --树形DP【转】

    题意:给了一棵树以及每个节点的颜色,1代表黑,0代表白,求将这棵树拆成k棵树,使得每棵树恰好有一个黑色节点的方法数 解法:树形DP问题.定义: dp[u][0]表示以u为根的子树对父亲的贡献为0 dp ...

  8. codeforces Round #263(div2) D. Appleman and Tree 树形dp

    题意: 给出一棵树,每个节点都被标记了黑或白色,要求把这棵树的其中k条变切换,划分成k+1棵子树,每颗子树必须有1个黑色节点,求有多少种划分方法. 题解: 树形dp dp[x][0]表示是以x为根的树 ...

  9. POJ 2486 Apple Tree(树形DP)

    题目链接 树形DP很弱啊,开始看题,觉得貌似挺简单的,然后发现貌似还可以往回走...然后就不知道怎么做了... 看看了题解http://www.cnblogs.com/wuyiqi/archive/2 ...

  10. [Ccodeforces 736C] Ostap and Tree - 树形DP

    给定一个n个点的树,把其中一些点涂成黑色,使得对于每个点,其最近的黑点的距离不超过K. 树形DP. 设置状态f[i][j]: 当j <= K时: 合法状态,表示i的子树中到根的最近黑点距离为j的 ...

随机推荐

  1. 2019.05.26 周日--《阿里巴巴 Java 开发手册》精华摘要

    一.写在开头 Java作为一个编程界最流行的语言之一,有着很强的生命力.代码的编写规范也是不容忽视的,今天,我就把自己阅读的国内的互联网巨头阿里巴巴的<阿里巴巴 Java 开发手册>一些精 ...

  2. Manifest文件

    Manifest文件是简单的文本文件,它告知浏览器缓存的内容(或不缓存的内容) Manifest文件可以分为三个部分: 1.CAHCEMANIFEST-在此标题下列出的文件将在首次下载后进行缓存. C ...

  3. url,href,src区别

    URL(Uniform Resource Locator) 统一资源定位符是对可以从互联网上得到的资源的位置和访问方法的一种简洁的表示,是互联网上标准资源的地址.互联网上的每个文件都有一个唯一的URL ...

  4. sql执行过长,如何入手优化

    一条sql执行过长的时间,你如何优化,从哪些方面 1.查看sql是否涉及多表的联表或者子查询,如果有,看是否能进行业务拆分,相关字段冗余或者合并成临时表(业务和算法的优化)2.涉及链表的查询,是否能进 ...

  5. hiho 1050 树的直径

    #1050 : 树中的最长路 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上回说到,小Ho得到了一棵二叉树玩具,这个玩具是由小球和木棍连接起来的,而在拆拼它的过程中, ...

  6. ACM 广度优化搜索算法总结

    广度优化搜索算法的本质:要求每个状态不能重复,这就需要我们:第一次先走一步可以到达的状态,如果还没有找到答案,就需要我们走到两步可以到达的状态.依次下去 核心算法:队列 基本步骤:          ...

  7. Linux学习-Linux的账号与群组

    使用者识别码: UID 与 GID Linux 主机并不会直接认识 你的"帐号名称"的,他仅认识 ID 啊 (ID 就是一组号码啦). 由于计算机仅认识 0 与 1,所 以主机对于 ...

  8. UVa 10564 DP Paths through the Hourglass

    从下往上DP,d(i, j, k)表示第(i, j)个格子走到底和为k的路径条数. 至于字典序最小,DP的时候记录一下路径就好. #include <cstdio> #include &l ...

  9. Python虚拟机函数机制之名字空间(二)

    函数执行时的名字空间 在Python虚拟机函数机制之无参调用(一)这一章中,我们对Python中的函数调用机制有个大概的了解,在此基础上,我们再来看一些细节上的问题.在执行MAKE_FUNCTION指 ...

  10. Python中的魔术方法详解(双下方法)

    介绍 在Python中,所有以“__”双下划线包起来的方法,都统称为“Magic Method”,中文称『魔术方法』,例如类的初始化方法 __init__ ,Python中所有的魔术方法均在官方文档中 ...