传送门

题目要求,求:

\[\sum_{i=1}^n\sum_{j=1}^mlcm(i,j)
\]

先转化为gcd的形式,然后枚举gcd。

\[\sum_{i=1}^n\sum_{j=1}^m\sum_{d=1}^n\frac{ij}{d}[gcd(i,j) = d]
\]

把d除进去,套用莫比乌斯函数的性质:

\[\sum_{d=1}^nd\sum_{i=1}^{\frac{n}{d}}i\sum_{j=1}^{\frac{m}{d}}j\sum_{p|i.p|j}\mu(p)
\]

继续替换得到:

\[\sum_{d=1}^nd\sum_{p=1}^{\frac{n}{d}}p^2\mu(p)s(\frac{n}{dp})s(\frac{m}{dp})
\]

其中s(n)表示\(\sum_{i=1}^ni\)

这个其实已经可以做了,直接枚举d,然后里面使用整除分块完成。这个看起来复杂度是\(O(n\sqrt{n})\)的,但是实际上它每次没有跑满,复杂度是\(O(n)\)左右的。

不过这个是弱化版,加强版还要求处理多组数据,这时候上面的做法就不好使了。继续推导,设\(T=dp\)

\[\sum_{T=1}^nT\sum_{d|T}d\mu(d)s(\frac{n}{T})s({\frac{m}{T}})
\]

设\(h(T) = \sum_{d|T}d\mu(d)\)问题在于怎么能快速求出\(h(T)\)

这并不是一个积性函数,但是我们仍然能线性把它筛出来。首先考虑T为质数的时候,这时候显然\(h(T) = 1 - T\)。如果现在加入一个已经出现在T中的质因子p,那么所有T原来的因子在乘上这个p之后,p的指数必然大于1,也就是说其莫比乌斯函数的值是0,原来的因子不变,所以\(h(Tp) = h(T)\).再考虑新加入一个因子的情况。加入之后,原来所有的因子其莫比乌斯函数的值变成其相反数,而且因为前面还有乘p,所以\(h(Tp) = (1-p)h(T)\),即\(h(Tp) = h(p)h(T)\)

所以我们把它线性筛出来,之后整除分块做即可。单次复杂度\(O(\sqrt{n})\)。注意因为此题有取模,所以要注意前缀和相减的时候,先变成正数。

弱化版代码:

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<cmath>
#include<set>
#include<vector>
#include<map>
#include<queue>
#define rep(i,a,n) for(int i = a;i <= n;i++)
#define per(i,n,a) for(int i = n;i >= a;i--)
#define enter putchar('\n')
#define fr friend inline
#define y1 poj
#define mp make_pair
#define pr pair<int,int>
#define fi first
#define sc second
#define pb push_back using namespace std;
typedef long long ll;
const int M = 10000005;
const int INF = 1000000009;
const ll mod = 20101009;
const double eps = 1e-7; int read()
{
int ans = 0,op = 1;char ch = getchar();
while(ch < '0' || ch > '9') {if(ch == '-') op = -1;ch = getchar();}
while(ch >= '0' && ch <= '9') ans = ans * 10 + ch - '0',ch = getchar();
return ans * op;
} ll k,p[M],mu[M],tot,n,m;
ll sum[M],ans,pre[M];
bool np[M]; void euler()
{
np[1] = 1,mu[1] = 1;
rep(i,2,M-2)
{
if(!np[i]) p[++tot] = i,mu[i] = -1;
for(int j = 1;i * p[j] <= M-2;j++)
{
np[i * p[j]] = 1;
if(!(i % p[j])) break;
mu[i * p[j]] = -mu[i];
}
}
rep(i,1,M-2) pre[i] = (pre[i-1] + (ll)i * (ll)i % mod * mu[i]) % mod;
rep(i,1,M-2) sum[i] = (sum[i-1] + (ll)i) % mod;
} int main()
{
euler();
n = read(),m = read();
int lim = min(n,m);
rep(d,1,lim)
{
int a = n / d,b = m / d,c = min(a,b);
ll cur = 0;
for(int i = 1,j;i <= c;i = j + 1)
{
j = min(a / (a / i),b / (b / i));
cur += ((pre[j] - pre[i-1] + mod) % mod * sum[a / i] % mod * sum[b / i] % mod),cur %= mod;
}
ans += (cur * (ll)d % mod),ans %= mod;
}
printf("%lld\n",ans);
return 0;
}

强化版代码:

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<cmath>
#include<set>
#include<vector>
#include<map>
#include<queue>
#define rep(i,a,n) for(int i = a;i <= n;i++)
#define per(i,n,a) for(int i = n;i >= a;i--)
#define enter putchar('\n')
#define fr friend inline
#define y1 poj
#define mp make_pair
#define pr pair<int,int>
#define fi first
#define sc second
#define pb push_back using namespace std;
typedef long long ll;
const int M = 10000005;
const int INF = 1000000009;
const ll mod = 20101009;
const double eps = 1e-7; int read()
{
int ans = 0,op = 1;char ch = getchar();
while(ch < '0' || ch > '9') {if(ch == '-') op = -1;ch = getchar();}
while(ch >= '0' && ch <= '9') ans = ans * 10 + ch - '0',ch = getchar();
return ans * op;
} ll k,p[M],mu[M],tot,n,m;
ll sum[M],ans,pre[M],f[M];
bool np[M]; void euler()
{
np[1] = 1,f[1] = 1;
rep(i,2,M-2)
{
if(!np[i]) p[++tot] = i,f[i] = (1 - i + mod) % mod;
for(int j = 1;i * p[j] <= M-2 && j <= tot;j++)
{
np[i * p[j]] = 1;
if(!(i % p[j])) {f[i * p[j]] = f[i];break;}
f[i * p[j]] = f[i] * f[p[j]] % mod;
}
}
rep(i,1,M-2) pre[i] = (pre[i-1] + ((ll)i * f[i] % mod)) % mod;
rep(i,1,M-2) sum[i] = (sum[i-1] + (ll)i) % mod;
} int main()
{
euler();
n = read(),m = read();
int lim = min(n,m);
for(int i = 1,j;i <= lim;i = j + 1)
{
j = min(n / (n / i),m / (m / i));
ans += ((pre[j] - pre[i-1] + mod) % mod * sum[n / i] % mod * sum[m / i] % mod),ans %= mod;
}
printf("%lld\n",ans);
return 0;
}

[国家集训队]Crash的数字表格 / JZPTAB的更多相关文章

  1. 洛谷 P1829 [国家集训队]Crash的数字表格 / JZPTAB 解题报告

    [国家集训队]Crash的数字表格 / JZPTAB 题意 求\(\sum\limits_{i=1}^n\sum\limits_{j=1}^mlcm(i,j)\),\(n,m\le 10^7\) 鉴于 ...

  2. [Luogu P1829] [国家集训队]Crash的数字表格 / JZPTAB (莫比乌斯反演)

    题面 传送门:洛咕 Solution 调到自闭,我好菜啊 为了方便讨论,以下式子\(m>=n\) 为了方便书写,以下式子中的除号均为向下取整 我们来颓柿子吧qwq 显然,题目让我们求: \(\l ...

  3. 题解-[国家集训队]Crash的数字表格 / JZPTAB

    题解-[国家集训队]Crash的数字表格 / JZPTAB 前置知识: 莫比乌斯反演 </> [国家集训队]Crash的数字表格 / JZPTAB 单组测试数据,给定 \(n,m\) ,求 ...

  4. [luogu1829][bzoj2154][国家集训队]Crash的数字表格 / JZPTAB【莫比乌斯反演】

    传送门:洛谷,bzoj 题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时整除a和b的最小正整 ...

  5. 洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)

    题目背景 提示:原 P1829 半数集问题 已经迁移至 P1028 数的计算 题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a ...

  6. 【题解】[国家集训队]Crash的数字表格 / JZPTAB

    求解\(\sum_{i = 1}^{n}\sum_{j = 1}^{m}lcm\left ( i,j \right )\). 有\(lcm\left ( i,j \right )=\frac{ij}{ ...

  7. P1829 [国家集训队]Crash的数字表格 / JZPTAB

    推式子太快乐啦!虽然我好蠢而且dummy和maomao好巨(划掉) 思路 莫比乌斯反演的题目 首先这题有\(O(\sqrt n)\)的做法但是我没写咕咕咕 然后就是爆推一波式子 \[ \sum_{i= ...

  8. 【[国家集训队]Crash的数字表格 / JZPTAB】

    这道题我们要求的是 \[\sum_{i=1}^N\sum_{j=1}^Mlcm(i,j)\] 总所周知\(lcm\)的性质不如\(gcd\)优雅,但是唯一分解定理告诉我们\(gcd(i,j)\time ...

  9. [国家集训队]Crash的数字表格 / JZPTAB 莫比乌斯反演

    ---题面--- 题解: $$ans = \sum_{i = 1}^{n}\sum_{j = 1}^{m}{\frac{ij}{gcd(i, j)}}$$ 改成枚举d(设n < m) $$ans ...

  10. 洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)

    传送门 式子好麻烦orz……大佬好腻害orz->这里 //minamoto #include<iostream> #include<cstdio> #define ll ...

随机推荐

  1. Linux如何显示文件指定行数的内容;显示第一行、中间几行和最后几行

    1.tail -n +/-数字 文件名 2.head -n 数字 文件名 3.sed -n "开始行,结束行p" 文件名 4.sed -n '1p;20,40p; "显示 ...

  2. Understand the Business Domain

     Understand the Business Domain Mark Richards EFFECTivE SoFTWARE ARCHiTECTS understand not only tec ...

  3. [转] RabbitMQ介绍

    转自: http://lynnkong.iteye.com/blog/1699684 1      什么是RabbitMQ? RabbitMQ是实现AMQP(高级消息队列协议)的消息中间件的一种,最初 ...

  4. Go Programming Blueprints 读书笔记(谈到了nsq/mgo处理数据持久化,可是业务逻辑不够复杂)

    Go Programming Blueprints http.Handle("/", &templateHandler{filename: "chat.html& ...

  5. ruby on rails模拟HTTP请求错误发生:end of file reached

    在文章 Ruby On Rails中REST API使用演示样例--基于云平台+云服务打造自己的在线翻译工具 中,利用ruby的Net::HTTP发起http请求訪问IBM Bluemix上的sour ...

  6. [框架安装趟雷指南]Ubuntu+1060+cuda+cudnn+Keras+TH+TF+MXnet

    [框架安装趟雷指南]Ubuntu+1060+cuda+cudnn+Keras+TH+TF+MXnet https://zhuanlan.zhihu.com/p/23480983 天清 9 个月前 写这 ...

  7. Coding/Github/Bitbucket 地址

    Coding:https://coding.net/u/OberonTony Github:https://github.com/Oberon-Tonya Bitbucket:https://bitb ...

  8. JNI在C和C++中的调用区别

    C-style JNI looks like (*env)->SomeJNICall(env, param1 ...) C++ style JNI looks like env->Some ...

  9. Linux 中权限控制实例

    前言 前文对 Linux 中的权限进行了较为透彻的分析.而本文,则在前文的基础上,具体说明如何在代码中进行权限控制. 下面的代码涉及到以下几个方面: 1. 创建文件时设置文件权限 2. 修改文件的默认 ...

  10. CGGeometry.h详解

     本文转载至:http://blog.csdn.net/chengyingzhilian/article/details/7894195 这些是在CGGeometry.h里的 CGPoint.CGSi ...