CS 分解
将学习到什么
CS 分解是分划的酉矩阵在分划的酉等价之下的标准型. 它的证明涉及奇异值分解、QR 分解以及一个简单习题.
一个直观的习题
设 \(\Gamma, L \in M_p\). 假设 \(\Gamma = \mathrm{diag}(\gamma_1,\cdots, \gamma_p)\), 其中 \(0 \leqslant \gamma_1 \leqslant \cdots \leqslant \gamma_p \leqslant 1\), \(L=[\ell_{ij}]\) 是下三角的, 则
\begin{align}
\begin{bmatrix} \Gamma & L & 0\end{bmatrix}=\begin{bmatrix} \gamma_1 & &&& \ell_{11} & & & 0 & 0 & & & 0 \\
& \gamma_2 &&& \ell_{21} & \ell_{22} & & & & \ddots & & \\
& & \ddots & & \vdots & \vdots & \ddots & & & & \ddots & \\
& & & \gamma_p & \ell_{p1} & \ell_{p2} & \cdots & \ell_{pp} & 0 & & & 0 \end{bmatrix} \in M_{p,2p+k}
\end{align}
如果 \([\Gamma \quad L \quad 0]\) 的行是标准正交的,我们断定 \(L\) 是对角的, \(L=\mathrm{diag}(\lambda_1,\cdots , \lambda_p)\), 且 \(\lvert \lambda_j \rvert ^2 = 1-\gamma_j^2,\,\,j=1,\cdots,p\). 即
\begin{align}
\begin{bmatrix} \Gamma & L & 0\end{bmatrix}=\begin{bmatrix} \gamma_1 & &&& \lambda_1 & & & & 0 & & & 0 \\
& \gamma_2 &&& & \lambda_2 & & & & \ddots & & \\
& & \ddots & & & & \ddots & & & & \ddots & \\
& & & \gamma_p & & & & \lambda_p & 0 & & & 0 \end{bmatrix}
\end{align}
对行着手去做,证明很直观.
CS 分解定理
定理(CS 分解): 设 \(p,q\) 与 \(n\) 是给定的整数,其中 \(1<p \leqslant q < n\) 且 \(p+q =n\). 设 \(U= \begin{bmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{bmatrix} \in M_n\) 是酉矩阵,其中 \(U_{11} \in M_p\) 且 \(U_{22} \in M_q\). 则存在酉矩阵 \(V_1,W_1 \in M_p\) 以及 \(V_2, W_2 \in M_q\), 使得
\begin{align}
\begin{bmatrix} V_1 & 0 \\ 0 & W_1 \end{bmatrix} \begin{bmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{bmatrix} \begin{bmatrix} V_2 & 0 \\ 0 & W_2 \end{bmatrix} = \begin{bmatrix} C & S & 0 \\ -S & C & 0 \\ 0 & 0& I_{q-p} \end{bmatrix}
\end{align}
其中 \(C = \mathrm{diag} (\sigma_1,\cdots, \sigma_p)\), \(\sigma_1 \geqslant \cdots \geqslant \sigma_p\) 是 \(U_{11}\) 的按照非增次序排列的奇异值,而 \(S= \mathrm{diag} \left( (1-\sigma_1^2)^{1/2},\cdots, (1-\sigma_1^p)^{1/2} \right)\)
证明: 基本思路是做出一系列的酉等价,它们一步一步将 \(U\) 化简为具有所需要的形式的分块矩阵. 第一步是利用奇异值分解:记 \(U_{11}=V \Sigma W=(VK_p)(K_p\Sigma K_p)(K_pW)=\tilde{V} \Gamma \tilde{W}\), 其中 \(V,W \in M_p\) 是酉矩阵,\(K_p\) 是 \(p\times p\) 反序矩阵. \(\tilde{V}=VK_p\), \(\tilde{W}=K_pW\), \(\Sigma = \mathrm{diag}(\sigma_1, \cdots, \sigma_p)\), 其中 \(\sigma_1 \geqslant \cdots \geqslant \sigma_p\), 且 \(\Gamma = K_p\Sigma K_p = \mathrm{diag}(\sigma_p, \cdots, \sigma_1)\). 计算
\begin{align}
\begin{bmatrix} \tilde{V}^* & 0 \\ 0 & I_q \end{bmatrix} \begin{bmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{bmatrix} \begin{bmatrix} \tilde{W}^* & 0 \\ 0 & I_q \end{bmatrix} = \begin{bmatrix} \Gamma & \hat{V}^*U_{12} \\ U_{21}\tilde{W}^* & U_{22} \end{bmatrix}
\end{align}
这个矩阵是酉矩阵(它是三个酉矩阵的乘积),所以每一列的 Euclid 范数均为 1 ,这就意味着 \(\sigma_1 = \gamma_p \leqslant 1\). 现在利用 QR 分解以及它的变形来记 \(\tilde{V}^*U_{12}=[L \quad 0] \tilde{Q}\) 以及 \(U_{21}\tilde{W}^* = Q \begin{bmatrix} R \\ 0 \end{bmatrix}\), 其中 \(\tilde{Q},Q \in M_q\) 是酉矩阵, \(L=[\ell_{ij}] \in M_p\) 是下三角矩阵,而 \(R=[r_{ij}] \in M_p\) 是上三角矩阵. 计算
\begin{align}
\begin{bmatrix} I_p & 0 \\ 0 & Q^* \end{bmatrix} \begin{bmatrix} \Gamma & \hat{V}^*U_{12} \\ U_{21}\tilde{W}^* & U_{22} \end{bmatrix} \begin{bmatrix} I_p & 0 \\ 0 &\tilde{Q}^* \end{bmatrix} = \begin{bmatrix} \Gamma &\begin{bmatrix} L & 0 \end{bmatrix} \\ \begin{bmatrix} R \\ 0 \end{bmatrix} & Q^*U_{22}\tilde{Q}^* \end{bmatrix}
\end{align}
上一习题中和论证方法表明:\(L\) 与 \(R\) 两者都是对角的,且对每个 \(i=1,\cdots,p\) 有 \(\lvert r_{ii} \rvert = \lvert \ell_{ii} \rvert = \sqrt{1-\gamma_i^2}\). 设 \(M=\mathrm{diag}(\sqrt{1-\gamma_1^2},\cdots, \sqrt{1-\gamma_p^2})\), 并令 \(t=\max \{ i:\gamma_i <1 \}\). 则存在对角酉矩阵 \(D_1,D_2 \in M_p\) 使得 \(D_1R=-M\) 以及 \(LD_2=M\), 所以通过 \(I_p \oplus D_1 \oplus I_{n-2p}\) 在左边作成的酉相合与通过 \(I_p \oplus D_2 \oplus I_{n-2p}\) 在右边作成的酉相合产生出一个形如
\begin{align}
\begin{bmatrix} \Gamma &\begin{bmatrix} M & 0 \end{bmatrix} \\ \begin{bmatrix} -M \\ 0 \end{bmatrix} & Z \end{bmatrix} = \begin{bmatrix} \Gamma_1 & 0 & M_1 & 0 & 0 \\ 0 & I_{p-t} & 0 & 0_{p-t} & 0 \\ -M_1 & 0 & Z_{11} & Z_{12} & Z_{13} \\ 0 & 0_{p-t} & Z_{21} & Z_{22} & Z_{23} \\ 0 & 0& Z_{31} & Z_{32} & Z_{33} \end{bmatrix}
\end{align}
的酉矩阵,其中有分划的酉矩阵 \(\Gamma = \Gamma_1 \oplus I_{p-t}\) 以及 \(M=M_1 \oplus 0_{p-t}\), 所以 \(M_1\) 是非奇异的. 第一行和第三分块列的正交性(以及 \(M_1\) 的非奇异性)就蕴含 \(Z_{11}=\Gamma_1\), 因此要求每一行和每一列都是单位向量就确保了 \(Z_{12}\), \(Z_{13}\), \(Z_{21}\) 以及 \(Z_{31}\) 全都是零分块. 从而我们有
\begin{align}
\begin{bmatrix} \Gamma_1 & 0 & M_1 & 0 & 0 \\ 0 & I_{p-t} & 0 & 0_{p-t} & 0 \\ -M_1 & 0 & Z_{11} & 0& 0 \\ 0 & 0_{p-t} & 0 & Z_{22} & Z_{23} \\ 0 & 0& 0 & Z_{32} & Z_{33} \end{bmatrix}
\end{align}
其右下角分块 \(\tilde{Z}= \begin{bmatrix} Z_{22} & Z_{23} \\ Z_{32} & Z_{33} \end{bmatrix} \in M_{q-t}\) 是酉矩阵的一个直和项,故而它是酉矩阵,于是对某个酉矩阵 \(\hat{V},\hat{W} \in M_{q-1}\) 有 \(\tilde{Z}=\hat{V}I_{q-t}\hat{W}\). 通过 \(I_{p+t} \oplus \hat{V}^*\) 在左边作出的酉等价以及通过 \(I_{p+t} \oplus \hat{W}^*\) 在右边作出的酉等价产生出分块矩阵
\begin{align}
\begin{bmatrix} \Gamma_1 & 0 & M_1 & 0 & 0 \\ 0 & I_{p-t} & 0 & 0_{p-t} & 0 \\ -M_1 & 0 & Z_{11} & 0& 0 \\ 0 & 0_{p-t} & 0 & I_{p-t} & 0 \\ 0 & 0& 0 & 0 & I_{q-p} \end{bmatrix}
\end{align}
最后通过 \(K_p \oplus K_p \oplus I_{q-p}\) 作出的酉相似产生出一个酉矩阵,它具有所要求的构造.
理解 CS 分解定理
CS 分解是与 \(I_p \oplus I_q\) 共形地加以分划且阶为 \(n=p+q\) (为方便起见,设 \(p \leqslant q\), 但这不是本质的要求)的所有酉矩阵 \(U= \begin{bmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{bmatrix} \in M_n\) 组成的集合的一种参数化的描述. 这些参数是四个更小的任意的酉矩阵 \(V_1,W_1 \in M_p\) 以及 \(V_2, W_2 \in M_q\),以及任意 \(p\) 个实数 \(\sigma_1,\cdots, \sigma_p\), \(1 \geqslant \sigma_1 \geqslant \cdots \geqslant \sigma_p \geqslant 0\). 这四个分块的参数化是
\begin{align}
U_{11} &= V_1 C W_1 , \quad &U_{12} &=V_1 \begin{bmatrix} S & 0 \end{bmatrix} W_2 \\
U_{21} &= V_2 \begin{bmatrix} -S \\ 0 \end{bmatrix} W_1 &U_{22} &= V_2 \begin{bmatrix} C & 0 \\ 0 & I_{q-p} \end{bmatrix} W_2
\end{align}
其中 \(C=\mathrm{diag}(\sigma_1, \cdots, \sigma_p)\), 而 \(S= \mathrm{diag} \left( (1-\sigma_1^2)^{1/2},\cdots, (1-\sigma_1^p)^{1/2} \right)\). CS 分解是一种用途广泛的工具,特别是在与子空间之间的距离以及角度有关的问题中.
应该知道什么
- CS 分解是分划的酉矩阵在分划的酉等价之下的标准型
CS 分解的更多相关文章
- Asp.Net MVC<九>:OWIN,关于StartUp.cs
https://msdn.microsoft.com/zh-cn/magazine/dn451439.aspx(Katana 项目入门) 一不小心写了个WEB服务器 快刀斩乱麻之 Katana OWI ...
- 分解成3NF的保持函数依赖的分解算法:
转换成3NF的保持函数依赖的分解算法: ρ={R1<U1,F1>,R2<U2,F2>,...,Rk<Uk,Fk>}是关系模式R<U,F>的一个分解,U= ...
- 矩阵分解(rank decomposition)文章代码汇总
矩阵分解(rank decomposition)文章代码汇总 矩阵分解(rank decomposition) 本文收集了现有矩阵分解的几乎所有算法和应用,原文链接:https://sites.goo ...
- Unity3D游戏开发从零单排(五) - 导入CS模型到Unity3D
游戏动画基础 Animation组件 Animation组件是对于老的动画系统来说的. 老的动画形同相应的动画就是clip,每一个运动都是一段单独的动画,使用Play()或CrossFade(),直接 ...
- SVD分解技术详解
版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gm ...
- ASP.NET Core 菜鸟之路:从Startup.cs说起
1.前言 本文主要是以Visual Studio 2017 默认的 WebApi 模板作为基架,基于Asp .Net Core 1.0,本文面向的是初学者,如果你有 ASP.NET Core 相关实践 ...
- unity3D:游戏分解之曲线
一提到曲线,很多新手就头疼了,包括我.查了很多资料,终于有个大概的了解.想深入了解曲线原理的,推荐一个链接http://www.cnblogs.com/jay-dong/archive/2012/09 ...
- 稀疏分解中的MP与OMP算法
MP:matching pursuit匹配追踪 OMP:正交匹配追踪 主要介绍MP与OMP算法的思想与流程,解释为什么需要引入正交? !!今天发现一个重大问题,是在读了博主的正交匹配追踪(OMP)在稀 ...
- CS(计算机科学)知识体
附 录 A CS( 计算机科学)知识体 计算教程 2001 报告的这篇附录定义了计算机科学本科教学计划中可能讲授的知识领域.该分类方案的依据及其历史.结构和应用的其 ...
随机推荐
- now code——处女座的期末复习
题目描述 快要期末考试了,处女座现在有n门课程需要考试,每一门课程需要花ai小时进行复习,考试的起始时间为bi,处女座为了考试可以不吃饭不睡觉,处女座想知道他能否复习完所有的科目(即在每一门考试之前复 ...
- GenericKeychain
KeychainItemWrapper是apple官方例子“GenericKeychain”里一个访问keychain常用操作的封装类,在官网上 下载了GenericKeychain项目后,只需要把“ ...
- SecureCRT 退格键等不好用
1.MongoDB Shell中退格键使用的问题. 利用SecureCRT工具访问linux的时候,在使用MongoDB的交互式shell的时候,退格键(Backspace)无法使用,导致无法修改输入 ...
- 在centos7下搭建nginx环境,并配置负载均衡,最终能达到通过域名直接访问的目的
1.关于nginx:个人理解的nginx它的主要用途就是负载均衡,当然可能还有其他一些功能可能我们不长用到,我们通过nginx可以干什么呢?为什么要引入它呢?原因是当有高并发访问服务器时,服务器可能会 ...
- jmeter diff测试
1.准备接口数据(对比字段,即json数据中需要提取的key对应的值进行对比) 2.配置获取EXCEL数据 3.新建线程,并建两个http请求,分别用于请求新旧接口 4.提取需要对比的内容 5.赋值变 ...
- Gym - 101810F ACM International Collegiate Programming Contest (2018)
bryce1010模板 http://codeforces.com/gym/101810 #include<bits/stdc++.h> using namespace std; #def ...
- MySQL之select简单使用
Select * from table_name Select column_name_1,column_name_2 from table_name Select * from student wh ...
- nodejs 学习(4) express+mongoose
一.关于安装和启动: 1.设置环境变量:D:\Program Files\MongoDB\bin 2.启动时需要cd到bin 目录,然后 mongod --dbpath "D:\mongdb ...
- 物体检测丨Faster R-CNN详解
这篇文章把Faster R-CNN的原理和实现阐述得非常清楚,于是我在读的时候顺便把他翻译成了中文,如果有错误的地方请大家指出. 原文:http://www.telesens.co/2018/03/1 ...
- 绘制复杂的原理图元件和pcb封装库用于cadence(一)
绘制TI公司的TPS53319电源芯片封装 由于产品设计需要大电流电源供电,选用TI公司TPS53319电源芯片通过cadence软件进行电路设计,但是TI公司所提供的封装格式为CAD File(.b ...