要点

  • 找凸包上的线很显然
  • 但每条线所有点都求一遍显然不可行,优化方法是:所有点都在一侧所以可以使用直线一般式的距离公式\(\frac{|A* \sum{x}+B* \sum{y}+C*n|}{\sqrt {A^2+B^2}}\)\(O(1)\)算出总距离
#include <cstdio>
#include <cstring>
#include <cmath>
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std; typedef double db;
const int maxn = 1e4 + 5;
const db eps = 1e-8; int dcmp(db x) {
if (fabs(x) < eps) return 0;
return x > 0 ? 1 : -1;
} int T, n, cnt;
struct Point {
db x, y; Point(){} Point(db a, db b):x(a), y(b){} bool operator < (const Point &rhs) const {
if (dcmp(x - rhs.x) != 0) return dcmp(x - rhs.x) < 0;
return dcmp(y - rhs.y) < 0;
}
}p[maxn];
Point v[maxn]; db Cross(Point A, Point B) {//顺时针转动则叉积为负
return A.x * B.y - A.y * B.x;
} Point operator - (Point A, Point B) {
return Point(A.x - B.x, A.y - B.y);
} bool operator == (Point A, Point B) {
return dcmp(A.x - B.x) == 0 && dcmp(A.y - B.y) == 0;
} void ConvexHull(int n) {
cnt = 0;
sort(p, p + n);
n = unique(p, p + n) - p;//去重 for (int i = 0; i < n; i++) {
while (cnt > 1 && dcmp(Cross(v[cnt - 1] - v[cnt - 2], p[i] - v[cnt - 2])) <= 0) cnt--;
v[cnt++] = p[i];
}
int k = cnt;
for (int i = n - 2; ~i; --i) {
while (cnt > k && dcmp(Cross(v[cnt - 1] - v[cnt - 2], p[i] - v[cnt - 2])) <= 0) cnt--;
v[cnt++] = p[i];
}
if (n > 1) cnt--;
} db Solve() {
if (n == 1) return 0;//特判
db res = 1e18, X = 0, Y = 0; for (int i = 0; i < n; i++) {
X += p[i].x;
Y += p[i].y;
}
for (int i = 0; i < cnt; i++) {
Point a = v[i], b = v[(i + 1) % cnt];
db A = b.y - a.y, B = a.x - b.x, C = Cross(b, a);
db calc = fabs((A * X + B * Y + C * n) / sqrt(A * A + B * B));
if (dcmp(calc - res) < 0) {
res = calc;
}
} return res / n;
} int main() {
scanf("%d", &T);
for (int kase = 1; kase <= T; kase++) {
scanf("%d", &n);
for (int i = 0; i < n; i++)
scanf("%lf %lf", &p[i].x, &p[i].y); ConvexHull(n);//求凸包
printf("Case #%d: %.3lf\n", kase, Solve());
}
}

UVa 11168(凸包、直线一般式)的更多相关文章

  1. UVa 11168 (凸包+点到直线距离) Airport

    题意: 平面上有n个点,求一条直线使得所有点都在直线的同一侧.并求这些点到直线的距离之和的最小值. 分析: 只要直线不穿过凸包,就满足第一个条件.要使距离和最小,那直线一定在凸包的边上.所以求出凸包以 ...

  2. UVA 11168 Airport(凸包+直线方程)

    题意:给你n[1,10000]个点,求出一条直线,让所有的点都在都在直线的一侧并且到直线的距离总和最小,输出最小平均值(最小值除以点数) 题解:根据题意可以知道任意角度画一条直线(所有点都在一边),然 ...

  3. 简单几何(数学公式+凸包) UVA 11168 Airport

    题目传送门 题意:找一条直线,使得其余的点都在直线的同一侧,而且使得到直线的平均距离最短. 分析:训练指南P274,先求凸包,如果每条边都算一边的话,是O (n ^ 2),然而根据公式知直线一般式为A ...

  4. uva 11168

    题意:给出平面上的n个点,求一条直线,使得所有点在该直线的同一侧且所有点到该直线的距离和最小,输出该距离和. 思路:要使所有点在该直线的同一侧,明显是直接利用凸包的边更优.所以枚举凸包的没条边,然后求 ...

  5. UVA 11168 Airport(凸包)

    Airport [题目链接]Airport [题目类型]凸包 &题解: 蓝书274页,要想到解析几何来降低复杂度,还用到点到直线的距离公式,之后向想到预处理x,y坐标之和,就可以O(1)查到距 ...

  6. UVA 11168 - Airport - [凸包基础题]

    题目链接:https://cn.vjudge.net/problem/UVA-11168 题意: 给出平面上的n个点,求一条直线,使得所有的点在该直线的同一侧(可以在该直线上),并且所有点到该直线的距 ...

  7. uva 11168 - Airport

    凸包+一点直线的知识: #include <cstdio> #include <cmath> #include <cstring> #include <alg ...

  8. UVa 10256 凸包简单应用

    题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  9. CodeForces - 605C 凸包+直线与凸包判交

    题目大意: 要完成两种属性p,q的需求,给定n个双属性物品及其单位个物品中含有的属性,要求选择最少的物品来达成属性需求.(可以选择实数个物品) 题解: 实际上是一种属性混合问题 我们知道对于两种双属性 ...

随机推荐

  1. Git_学习_02_ 分支

    Git鼓励大量使用分支: 1.查看分支:git branch 2.创建分支:git branch <name> 3.切换分支:git checkout <name> 4.创建+ ...

  2. 跨线程send message

    今天同事问了一个问题,说在线程中send message 和直接调用是不是一样,他觉得是一样的,但是线程跟踪却发现处理过程是在接收消息队列完成.回家看到博客园上的一番争论才有些明白,这里贴出来,共勉 ...

  3. AtCoder Beginner Contest 102

    A - Multiple of 2 and N Time Limit: 2 sec / Memory Limit: 1024 MB Score : 100100 points Problem Stat ...

  4. cmder的下载和使用

    下载地址:http://cmder.net/ 设置环境变量,CMDER_HOME=cmder.exe所在目录,并在path中增加%CMDER_HOME%. 右击我的电脑->属性->(左侧) ...

  5. MySQL-计算当月重新激活客户_20161013

    13号的草稿 12号的明天补充更新,最近太忙了. 客户留存率是衡量客户价值经常用的指标,可以反映客户的活跃程度,在互联网企业,尤其是现在手机端流量已经超过PC端流量,在安卓和IOS设备上在线时长的数据 ...

  6. ACM学习历程—ZOJ3471 Most Powerful(dp && 状态压缩 && 记忆化搜索 && 位运算)

    Description Recently, researchers on Mars have discovered N powerful atoms. All of them are differen ...

  7. 【前端】jQuery DataTables 使用手册(精简版)

    转载请注明出处:http://www.cnblogs.com/shamoyuu/p/5182940.html 前排提醒,这个插件能不用就不用,那么多好的插件等着你,为什么要用它呢?就算用easyui的 ...

  8. JVM内存溢出环境备份方法

    线上Tomcat服务内存溢出,且不容易重现,又没配置JMX监控端口,如何在不重启Tomcat的情况下备份堆dump和线程dump,进而分析原因? 因为Tomcat以服务模式运行,直接用JVisualV ...

  9. C#支持从自定义日期时间格式到DateTime类型

            /// <summary>         ///         /// </summary>         /// <param name=&quo ...

  10. Python中正则匹配使用findall时的注意事项

    在使用正则搜索内容时遇到一个小坑,百度搜了一下,遇到这个坑的还不少,特此记录一下. 比如说有一个字符串  "123@qq.comaaa@163.combbb@126.comasdf111@a ...