链接:

http://poj.org/problem?id=1258

http://acm.hust.edu.cn/vjudge/contest/view.action?cid=82831#problem/I

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 45751   Accepted: 18835

Description

Farmer John has been elected mayor of his town! One of his campaign promises was to bring internet connectivity to all farms in the area. He needs your help, of course. 
Farmer John ordered a high speed connection for his farm and is going to share his connectivity with the other farmers. To minimize cost, he wants to lay the minimum amount of optical fiber to connect his farm to all the other farms. 
Given a list of how much fiber it takes to connect each pair of farms, you must find the minimum amount of fiber needed to connect them all together. Each farm must connect to some other farm such that a packet can flow from any one farm to any other farm. 
The distance between any two farms will not exceed 100,000. 

Input

The input includes several cases. For each case, the first line contains the number of farms, N (3 <= N <= 100). The following lines contain the N x N conectivity matrix, where each element shows the distance from on farm to another. Logically, they are N lines of N space-separated integers. Physically, they are limited in length to 80 characters, so some lines continue onto others. Of course, the diagonal will be 0, since the distance from farm i to itself is not interesting for this problem.

Output

For each case, output a single integer length that is the sum of the minimum length of fiber required to connect the entire set of farms.

Sample Input

4
0 4 9 21
4 0 8 17
9 8 0 16
21 17 16 0

Sample Output

28

代码:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; const int N = ;
const int INF = 0xfffffff; int n, J[N][N], dist[N], vis[N]; int Prim()
{
int i, j, ans=;
dist[]=;
memset(vis, , sizeof(vis));
vis[]=; for(i=; i<=n; i++)
dist[i]=J[][i]; for(i=; i<n; i++)
{
int index=, MIN=INF;
for(j=; j<=n; j++)
{
if(!vis[j] && dist[j]<MIN)
{
index=j; MIN=dist[j];
}
}
vis[index]=;
ans += MIN;
for(j=; j<=n; j++)
{
if(!vis[j] && dist[j]>J[index][j])
dist[j]=J[index][j];
}
}
return ans;
} int main ()
{
while(scanf("%d", &n)!=EOF)
{
int i, j; memset(J, , sizeof(J)); for(i=; i<=n; i++)
for(j=; j<=n; j++)
scanf("%d", &J[i][j]); int ans=Prim(); printf("%d\n", ans);
}
return ;
}

(最小生成树)Agri-Net -- POJ -- 1258的更多相关文章

  1. 【裸最小生成树】 模板 poj 1258

    #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #def ...

  2. poj 1251 poj 1258 hdu 1863 poj 1287 poj 2421 hdu 1233 最小生成树模板题

    poj 1251  && hdu 1301 Sample Input 9 //n 结点数A 2 B 12 I 25B 3 C 10 H 40 I 8C 2 D 18 G 55D 1 E ...

  3. 最小生成树 10.1.5.253 1505 poj 1258 http://poj.org/problem?id=1258

    #include <iostream>// poj 1258 10.1.5.253 1505 using namespace std; #define N 105 // 顶点的最大个数 ( ...

  4. POJ 1258 Agri-Net|| POJ 2485 Highways MST

    POJ 1258 Agri-Net http://poj.org/problem?id=1258 水题. 题目就是让你求MST,连矩阵都给你了. prim版 #include<cstdio> ...

  5. poj - 1258 Agri-Net (最小生成树)

    http://poj.org/problem?id=1258 FJ为了竞选市长,承诺为这个地区的所有农场联网,为了减少花费,希望所需光纤越少越好,给定每两个农场的花费,求出最小花费. 最小生成树. # ...

  6. poj 1258 最小生成树 模板

    POJ 最小生成树模板 Kruskal算法 #include<iostream> #include<algorithm> #include<stdio.h> #in ...

  7. POJ 1258 最小生成树

    23333333333 完全是道水题.因为是偶自己读懂自己做出来的..T_T.prim的模板题水过. DESCRIPTION:John竞选的时候许诺会给村子连网.现在给你任意两个村子之间的距离.让你求 ...

  8. poj 1258 Agri-Net 最小生成树 kruskal

    点击打开链接 Agri-Net Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 33733   Accepted: 13539 ...

  9. POJ 1258 Agri-Net(最小生成树,模板题)

    用的是prim算法. 我用vector数组,每次求最小的dis时,不需要遍历所有的点,只需要遍历之前加入到vector数组中的点(即dis[v]!=INF的点).但其实时间也差不多,和遍历所有的点的方 ...

随机推荐

  1. check_http检查http服务

    选 项 说 明 -H, --hostname=ADDRESS 主机名或域名 -I, --IP-address=ADDRESS server的IP地址,用于在不能DNS的情况下 -p, --port=I ...

  2. Windows驱动手动卸载与安装

    彻底卸载的流程 1.删除C:\windows\inf\oem.inf路径下的所有oem文件 2.删除c:\windows\system32\drivers路径下对应的sys文件 3.(重要) 第一步: ...

  3. express.Router

    [express.Router] 1.可使用 express.Router 类创建模块化.可挂载的路由句柄.Router 实例是一个完整的中间件和路由系统,因此常称其为一个 “mini-app”. 下 ...

  4. Jmeter响应数据为乱码的处理

    jmeter新手,跟着教程,发现响应的数据为乱码,百度到两种方法: 方法一:在相应节点的下方,添加后置处理器-BeanShell PostProcessor 添加一句代码:prev.setDataEn ...

  5. java并发中的锁

    java中的锁,最基本的是Lock接口. Lock接口中的方法,主要是: lock(): 获取锁,lock()方法会对Lock实例对象进行加锁,因此所有对该对象调用lock()方法的线程都会被阻塞,直 ...

  6. python之递归锁【Rlock】

    # 递归锁:就是一把锁中还有一把小锁,比如学校的大门口有一个大锁,学校里的 #每个教室也有一把小锁,以后所有的锁都用rlock就可以了,不要用lock,尤其是多层锁的时候,必须要用递归锁 import ...

  7. linux下安装memcached以及扩展(xampp环境)

    网上有很多相关的文章,就不具体写了.(假设这里文件都上传到更目录下的tmp文件夹下) 1.大致流程先装 libevent 和 memcache http://www.cnblogs.com/zgx/a ...

  8. Spring框架之什么是IOC的功能?

    1. 什么是IOC的功能? * IoC -- Inverse of Control,控制反转,将对象的创建权反转给Spring!! * 使用IOC可以解决的程序耦合性高的问题!!  

  9. golang开发集训营

    初识golang Go与VScode开发工具 Golang开门见山

  10. sock基础编程介绍

    一个简单的python socket编程 一.套接字 套接字是为特定网络协议(例如TCP/IP,ICMP/IP,UDP/IP等)套件对上的网络应用程序提供者提供当前可移植标准的对象.它们允许程序接受并 ...