bzoj 4451 : [Cerc2015]Frightful Formula FFT
4451: [Cerc2015]Frightful Formula
Time Limit: 10 Sec Memory Limit: 64 MB
Submit: 177 Solved: 57
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
3 0 0 0
0 0 2
0 3 0
Sample Input2:
4 3 5 2
7 1 4 3
7 4 4 8
Sample Output
0
Sample Output2:
41817
数据范围:
2<=n<=200000
其余的数大于等于0小于等于10^6
首先这道题每个变量对答案的贡献需要分开考虑。
第一行第i个数贡献为$a[1][i]\times a^{n-i} \times b^{n-1}\times C^{n-i}_{2n-i-2}$
相当于每个点先转到第二列对应点上,然后类似杨辉三角形向右下拓展,乘上对应的a和b。
列同理。
因为每个点会多产生出来一个c,所以还有一部分是c的贡献。
$$c\times \sum^{n}_{i=2} \sum^{n}_{j=2} a^{n-i}b^{n-j}C^{n-i}_{2n-i-j}=c\times \sum^{2n}_{i=4}(2n-i)!\sum_{j=2}^{n} \frac{a^{n-i+j}}{(n-i+j)!}\times \frac{b^{n-j}}{(n-j)!}$$
上FFT.
为了避免掉精度,把每个数拆成$a*1024+b$的两部分别卷积再合起来。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#define pi acos(-1)
#define ll long long
#define N 524289
#define NX 200005
using namespace std;
struct E
{
double x,y;
E (){;}
E (double _x,double _y){x=_x,y=_y;}
E operator + (const E a){return E(a.x+x,a.y+y);};
E operator - (const E a){return E(x-a.x,y-a.y);};
E operator * (const E a){return E(x*a.x-y*a.y,x*a.y+y*a.x);};
}a[N],b[N];
int n,R[N];
void FFT(E *a,int f)
{
for(int i=0;i<n;i++)if(i<R[i])swap(a[i],a[R[i]]);
for(int i=1;i<n;i<<=1)
{
E wn(cos(pi/i),f*sin(pi/i));
for(int j=0;j<n;j+=(i<<1))
{
E w(1,0);
for(int k=0;k<i;k++,w=w*wn)
{
E x=a[j+k],y=w*a[j+k+i];
a[j+k]=x+y;a[j+k+i]=x-y;
}
}
}
if(f==-1)for(int i=0;i<n;i++)a[i].x/=n;
return ;
}
const int p = 1000003;
const int M = 1024;
ll pw(ll x,ll y)
{
ll lst=1;
while(y)
{
if(y&1)lst=lst*x%p;
y>>=1;
x=x*x%p;
}
return lst;
}
int l[NX],r[NX],pwa[NX],pwb[NX],jie[2*NX],ni[NX];
ll A0[N],B0[N],A1[N],B1[N],T1[N],T2[N],T3[N],T4[N];
void mul(ll *ans,ll *a1,ll *b1)
{
for(int i=0;i<n;i++)a[i].x=a[i].y=b[i].x=b[i].y=0;
for(int i=0;i<n;i++)a[i].x=a1[i];
for(int i=0;i<n;i++)b[i].x=b1[i];
FFT(a,1);FFT(b,1);
for(int i=0;i<n;i++)a[i]=a[i]*b[i];
FFT(a,-1);
for(int i=0;i<n;i++)ans[i]=((ll)(a[i].x+0.5))%p;
return ;
}
int main()
{
int tn,ta,tb,tc;
scanf("%d%d%d%d",&tn,&ta,&tb,&tc); for(int i=1;i<=tn;i++)scanf("%d",&l[i]);
for(int i=1;i<=tn;i++)scanf("%d",&r[i]); jie[0]=1;ni[0]=ni[1]=1;
for(int i=1;i<=2*tn;i++)jie[i]=1LL*jie[i-1]*i%p;
for(int i=2;i<=tn;i++)ni[i]=(1LL*(-p/i)*ni[p%i]%p+p)%p;
for(int i=1;i<=tn;i++)ni[i]=1LL*ni[i]*ni[i-1]%p; pwa[0]=1;pwb[0]=1;
for(int i=1;i<=tn;i++)pwa[i]=1LL*pwa[i-1]*ta%p;
for(int i=1;i<=tn;i++)pwb[i]=1LL*pwb[i-1]*tb%p; for(int i=1;i<=tn;i++)T1[i]=1LL*pwa[tn-i]*ni[tn-i]%p;
for(int i=1;i<=tn;i++)T2[i]=1LL*pwb[tn-i]*ni[tn-i]%p; ll ans=0; for(int i=2;i<=tn;i++)ans+=1LL*r[i]*pwb[tn-1]%p*pwa[tn-i]%p*jie[2*tn-i-2]%p*ni[tn-2]%p*ni[tn-i]%p;
for(int i=2;i<=tn;i++)ans+=1LL*l[i]*pwa[tn-1]%p*pwb[tn-i]%p*jie[2*tn-i-2]%p*ni[tn-2]%p*ni[tn-i]%p; int l=0;n=1;
while(n<=tn<<1)n<<=1,l++;
for(int i=0;i<n;i++)R[i]=(R[i>>1]>>1)|((i&1)<<(l-1)); for(int i=2;i<=tn;i++)
{
A0[i]=T1[i]%M;A1[i]=T1[i]/M;
B0[i]=T2[i]%M;B1[i]=T2[i]/M;
}
memset(T1,0,sizeof(T1));memset(T2,0,sizeof(T2));
mul(T1,A0,B0);mul(T2,A1,B0);mul(T3,A0,B1);mul(T4,A1,B1); for(int i=0;i<n;i++)
{
T2[i]+=T3[i];
(T1[i]+=T2[i]*M%p+T4[i]*M%p*M%p)%=p;
} ll tmp=0;
for(int i=4;i<=2*tn;i++)
{
tmp+=1LL*jie[2*tn-i]*T1[i]%p;
tmp%=p;
}tmp=tmp*tc%p; ans=(ans+tmp)%p;
printf("%lld\n",ans);
return 0;
}
bzoj 4451 : [Cerc2015]Frightful Formula FFT的更多相关文章
- LG4351 [CERC2015]Frightful Formula
Frightful Formula 给你一个\(n\times n\)矩阵的第一行和第一列,其余的数通过如下公式推出: \[f_{i,j}=a\cdot f_{i,j-1}+b\cdot f_{i-1 ...
- BZOJ4451 [Cerc2015]Frightful Formula 多项式 FFT 递推 组合数学
原文链接http://www.cnblogs.com/zhouzhendong/p/8820963.html 题目传送门 - BZOJ4451 题意 给你一个$n\times n$矩阵的第一行和第一列 ...
- BZOJ4451 : [Cerc2015]Frightful Formula
$(i,1)$对答案的贡献为$l_iC(2n-i-2,n-i)a^{n-1}b^{n-i}$. $(1,i)$对答案的贡献为$t_iC(2n-i-2,n-i)*a^{n-i}b^{n-1}$. $(i ...
- Frightful Formula Gym - 101480F (待定系数法)
Problem F: Frightful Formula \[ Time Limit: 10 s \quad Memory Limit: 512 MiB \] 题意 题意就是存在一个\(n*n\)的矩 ...
- [BZOJ 3456]城市规划(cdq分治+FFT)
[BZOJ 3456]城市规划(cdq分治+FFT) 题面 求有标号n个点无向连通图数目. 分析 设\(f(i)\)表示\(i\)个点组成的无向连通图数量,\(g(i)\)表示\(i\)个点的图的数量 ...
- 【BZOJ】【2179】FFT快速傅里叶
FFT 做的第二道用到FFT的……好吧其实还是模板题-_-b 百度上说好像分治也能做……不过像FFT这种敲模板的还是省事=.= /*********************************** ...
- [BZOJ 4436][Cerc2015]Kernel Knights
[Cerc2015]Kernel Knights Time Limit: 2 Sec Memory Limit: 512 MBSubmit: 5 Solved: 4[Submit][Status][D ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- BZOJ 4259: 残缺的字符串 [FFT]
4259: 残缺的字符串 题意:s,t,星号任意字符,匹配方案数 和上题一样 多乘上一个\(a_{j+i}\)就行了 #include <iostream> #include <cs ...
随机推荐
- React Native移动开发实战-2-如何调试React Native项目
在实际开发中,还有一个影响开发效率的重要因素:调试. 在1.4.3节中已经介绍了Enable Live Debugger的使用.本节来介绍另一个非常重要的调试选项:Debug JSRemotely选项 ...
- Sqlmap常用命令大全
1 Options(选项) -h,--help 显示帮助消息-hh 显示详细帮助-version -v VERBOSE 详细级别 0-6 默认12 Target 目标-u URL--url=URL-g ...
- sync命令详解
转:https://blog.csdn.net/everything1209/article/details/50423679 1.谁和谁同步? 2.为什么要同步?复制移动的过程不是同步的吗,都发生了 ...
- ltrace命令详解
原文链接:https://ipcmen.com/ltrace 用来跟踪进程调用库函数的情况 补充说明 NAME ltrace - A library call tracer ltrace命 ...
- python所遇到的坑
我是在ubuntu中,自带的有python2,python3有安装了anaconda套件,所以python的版本很多,曾经想删除过不用的python. 先执行 sudo apt remove pyth ...
- Alpha阶段项目Postmortem会议总结
(一)设想和目标 1.我们的软件要解决什么问题?是否定义的很清楚?是否对典型用户和典型场景有清晰的描述? 我们的软件主要解决总是不知道在什么时间该做什么事情,或是老是忘记做一些事情的问题,通过添加事件 ...
- Chapter 2 软件过程
软件发展前期,人们只重视结果而忽略了过程,随着技术的成熟,软件过程的重要性被日益发觉.软件过程是软件工程人员为了获得软件产品而在软件工具的支持下实施的一系列软件工程活动. 软件过程的基本活动包括问题提 ...
- ASP.NET中实现封装与策略模式
首先把运算方法封装起来,这样在网页界面中直接就可以调用了,不过是换张脸而已! using System; using System.Collections.Generic; using System. ...
- BNUOJ 52308 We don't wanna work! set模拟
题目链接: https://acm.bnu.edu.cn/v3/problem_show.php?pid=52308 We don't wanna work! Time Limit: 60000msM ...
- yum与rmp
清理一切缓存[root@geust02 ~]# yum clean all 重建元数据[root@geust02 ~]# yum makecache 查询vim相关的软件包[root@geu ...