题面

考虑这个平方的实际意义,实际是说取两次取出一样的序列

那么设$dp[i][j][k][h]$表示第一次在上面取$i$个下面取$j$个,第二次在上面取$k$个下面取$h$个的方案数

等等$n^4$根本开不下+过不去啊=。=

发现$i,j,k$固定时$h$可以算出来,于是少一个$n$的复杂度

建议填表转移,每次从$dp[i][j][k]$转移过去,所以如果空间不够就把$i$滚掉

提示:被卡常的尝试统计的时候判一下是否有值就能过了。。。

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=,mod=;
int n,m,noww,last,dp[][N][N];
char a[N],b[N];
void Mod(int &x)
{
if(x>=mod) x-=mod;
}
int main()
{
register int i,j,k;
scanf("%d%d%s%s",&n,&m,a+,b+);
dp[][][]=noww=;
for(i=;i<=n;i++)
{
memset(dp[noww],,sizeof dp[noww]);
for(j=;j<=m;j++)
for(k=;k<=n;k++)
{
int h=i+j-k,las=dp[last][j][k];
if(h>=&&h<=m&&las)
{
if(a[i+]==a[k+]) Mod(dp[noww][j][k+]+=las);
if(a[i+]==b[h+]) Mod(dp[noww][j][k]+=las);
if(b[j+]==b[h+]) Mod(dp[last][j+][k]+=las);
if(b[j+]==a[k+]) Mod(dp[last][j+][k+]+=las);
}
}
last=noww,noww^=;
}
printf("%d",dp[noww][m][n]);
return ;
}

解题:NOI 2009 管道取珠的更多相关文章

  1. 动态规划:NOI 2009 管道取珠

    [NOI2009] 管道取珠 输入文件:ballb.in   输出文件:ballb.out   简单对比 时间限制:1 s   内存限制:512 MB #include <iostream> ...

  2. BZOJ 1566 【NOI2009】 管道取珠

    题目链接:管道取珠 这道题思路还是很巧妙的. 一开始我看着那个平方不知所措……看了题解后发现,这种问题有一类巧妙的转化.我们可以看成两个人来玩这个游戏,那么答案就是第二个人的每个方案在第一个人的所有方 ...

  3. 【BZOJ1566】【NOI2009】管道取珠(动态规划)

    [BZOJ1566][NOI2009]管道取珠(动态规划) 题面 BZOJ 题解 蛤?只有两档部分分.一脸不爽.jpg 第一档?爆搜,这么显然,爆搜+状压最后统计一下就好了 #include<i ...

  4. 【BZOJ 1566】 1566: [NOI2009]管道取珠 (DP)

    1566: [NOI2009]管道取珠 Time Limit: 20 Sec  Memory Limit: 650 MBSubmit: 1659  Solved: 971 Description In ...

  5. BZOJ1566 【NOI2009】管道取珠

    题面 这是一道DP神题,直到我写下这句题解时也没有想明白…… 首先,这道题要我们求所有(不同输出序列的方案数)的平方和,于是我们当然就想到求所有不同输出序列的方案数……(大雾) .这道题一个巧妙的地方 ...

  6. Bzoj 1566: [NOI2009]管道取珠(DP)

    1566: [NOI2009]管道取珠 Time Limit: 20 Sec Memory Limit: 650 MB Submit: 1558 Solved: 890 [Submit][Status ...

  7. NOI2009 管道取珠 神仙DP

    原题链接 原题让求的是\(\sum\limits a_i^2\),这个东西直接求非常难求.我们考虑转化一下问题. 首先把\(a_i^2\)拆成\((1+1+...+1)(1+1+...+1)\),两个 ...

  8. BZOJ.1566.[NOI2009]管道取珠(DP 思路)

    BZOJ 洛谷 考虑\(a_i^2\)有什么意义:两个人分别操作原序列,使得得到的输出序列都为\(i\)的方案数.\(\sum a_i^2\)就是两人得到的输出序列相同的方案数. \(f[i][j][ ...

  9. BZOJ 1566 管道取珠(DP)

    求方案数的平方之和.这个看起来很难解决.如果转化为求方案数的有序对的个数.那么就相当于求A和B同时取,最后序列一样的种数. 令dp[i][j][k]表示A在上管道取了i个,下管道取了j个,B在上管道取 ...

随机推荐

  1. Java中 static、final和static final的特点及区别

    final: final可以修饰:属性,方法,类,局部变量(方法中的变量) final修饰的属性的初始化可以在编译期,也可以在运行时,初始化后不能被改变. final修饰的属性跟具体对象有关,在运行期 ...

  2. Python处理PDF和Word文档常用的方法

    Python处理PDF和Word文档的模块是PyPDF2,使用之前需要先导入. 打开一个PDF文档的操作顺序是:用open()函数打开文件并用一个变量来接收,然后把变量给传递给PdfFileReade ...

  3. Bootstrap学习--栅格系统

    响应式布局页面:即同一套页面可以兼容不同分辨率的设备. Bootstrap依赖于栅格系统实现响应式布局,将一行均分为12个格子,可以指定元素占几个格子. 实现过程 1.定义容器,相当于之前的table ...

  4. 阿里云解析记录应对家里动态IP

    <?php #需要配置的项 define('ACCESSKEYID',''); #阿里云用户密钥ID 获取方法 https://help.aliyun.com/knowledge_detail/ ...

  5. Linux shell中&,&&,|,||的用法

    前言 在玩dvwa的命令注入漏洞的时候,遇到了没有预料到的错误,执行 ping 127.0.0.1 & echo "<?php phpinfo(); ?>" & ...

  6. 第十一次ScrumMeeting博客

    第十一次ScrumMeeting博客 本次会议于11月29日(三)22时整在3公寓725房间召开,持续30分钟. 与会人员:刘畅.辛德泰张安澜.赵奕.方科栋. 1. 每个人的工作(有Issue的内容和 ...

  7. 2-Third Scrum Meeting-20151203

    任务安排 闫昊: 今日完成:请假.(编译+计组,压力有点大) 明日任务:设计本地数据库. 唐彬: 今日完成:请假.(编译+计组,压力有点大) 明日任务:阅读ios客户端代码. 史烨轩: 今日完成:请假 ...

  8. 接着继续(OO博客第四弹)

    .测试与JSF正确性论证 测试和JSF正确性论证是对一个程序进行检验的两种方式.测试是来的最直接的,输入合法的输入给出正确的提示,输入非法的输入给出错误信息反馈,直接就能很容易的了解程序的运行情况.但 ...

  9. 炸弹人 之 N A B C D

    团队开发之个人——NABCD理解 项目名称:炸弹人(app)N(need):    随着移动终端的发展,各类软件的需求必然会有长期的需求,而游戏类软件是不同年龄阶段的人共同的需求,我们将要开发的这款游 ...

  10. HTML和CSS <h1> --3-- <h1>

    标签语义化,让网页更好的被搜索引擎理解 标签的用途:我们学习网页制作时,常常会听到一个词,语义化.那么什么叫做语义化呢,说的通俗点就是:明白每个标签的用途(在什么情况下使用此标签合理)比如,网页上的文 ...