求\(\sum \limits_{i = 1}^n gcd(i, n)\)


\(\sum \limits_{i = 1}^n gcd(i, n)\)

\(=\sum \limits_{i = 1}^n \sum\limits_{d|i\;and\;d|n} \varphi(d)\)

\(=\sum \limits_{d |n} \varphi(d) * \frac{n}{d}\)

然后就可以以一个很低的复杂度过了

反正复杂度是不会超过\(O(\sqrt n * d(n))\)的


#include <bits/stdc++.h>
using namespace std; #define ll long long ll n, ans; inline ll phi(ll m) {
ll ret = m;
for(ll t = 2; t * t <= m; t ++)
if(m % t == 0) {
while(m % t == 0) m /= t;
ret /= t; ret *= (t - 1);
}
if(m > 1) ret /= m, ret *= (m - 1);
return ret;
} int main() {
cin >> n;
for(ll i = 1; i * i <= n; i ++)
if(n % i == 0) {
ans += phi(i) * (n / i);
if(n / i != i) ans += phi(n / i) * i;
}
printf("%lld\n", ans);
return 0;
}

luoguP2303 [SDOI2012]Longge的问题 化式子的更多相关文章

  1. BZOJ 2705: [SDOI2012]Longge的问题( 数论 )

    T了一版....是因为我找质因数的姿势不对... 考虑n的每个因数对答案的贡献. 答案就是 ∑ d * phi(n / d) (d | n) 直接枚举n的因数然后求phi就行了. 但是我们可以做的更好 ...

  2. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

  3. BZOJ 2705: [SDOI2012]Longge的问题

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2554  Solved: 1566[Submit][ ...

  4. BZOJ 2705: [SDOI2012]Longge的问题 GCD

    2705: [SDOI2012]Longge的问题 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnl ...

  5. bzoj 2705: [SDOI2012]Longge的问题 歐拉函數

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1035  Solved: 669[Submit][S ...

  6. Bzoj 2705: [SDOI2012]Longge的问题 欧拉函数,数论

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1959  Solved: 1229[Submit][ ...

  7. 洛谷 P2303 [SDOi2012]Longge的问题 解题报告

    P2303 [SDOi2012]Longge的问题 题目背景 SDOi2012 题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数\(N\),你需要 ...

  8. BZOJ2705 SDOI2012 Longge的问题 【欧拉函数】

    BZOJ2705 SDOI2012 Longge的问题 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, ...

  9. 【bzoj2705】[SDOI2012]Longge的问题

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2507  Solved: 1531[Submit][ ...

随机推荐

  1. 《区块链100问》第84集:资产代币化之对标黄金Digix

    黄金是避险的不二选择.Digix发行的黄金代币则是数字资产世界里的黄金,其代币简称DGX,能够在数字资产世界中起到避险的作用. DGX如何实现对标黄金呢?它将黄金资产进行了上链(即:区块链)操作.举个 ...

  2. windebug分析高cpu问题

    分析高CPU的关键是找到哪个线程是持续运行,占用CPU时间. 可以隔上两分钟连续抓两个dump文件,使用 !runaway 查看线程运行的时间 通过对比两个dump文件的线程时间,看看哪个线程运行的时 ...

  3. UNIX环境高级编程 第4章 文件和目录

    第三章说明了关于文件I/O的基本函数,主要是针对普通regular类型文件.本章描述文件的属性,除了regular文件还有其他类型的文件. 函数stat.fstat.fstatat和lstat sta ...

  4. Python使用OpenCV实现简单的人脸检测

    文章目录: OpenCV安装 安装numpy 安装opencv OpenCV使用 OpenCV测试 效果图: 注意: 图片人脸检测 程序要求: 技术实现思路 注意 本文使用的环境是:Windows+P ...

  5. 【codeforces】【比赛题解】#872 CF Round #440 (Div.2)

    链接. [A]寻找漂亮数字 题意: 给定了两列非零数字.我们说一个数是漂亮的,当它的十进制表达中有至少一个数从数列一中取出,至少有一个数从数列二中取出.最小的漂亮数字是多少? 输入: 第一行两个数\( ...

  6. mycat读写分离与主从切换【转】

    什么是mycat,以及mycat的优点和特性本文不做赘述,本文继续本着实战的态度,来分享一些个人对mycat的基础功能实践.本文mycat的读写分离和主从切换的环境为mysql主从环境. 如何安装my ...

  7. mysql -> 事务&事务锁_09

    事务的特性 redo undo 锁的隔离级别

  8. Python2和Python3同时安装到Windows

    上月已经把Python2安装好了,安装目录和及其下的Scripts也在安装时添加到了环境变量PATH中,可以使用python命令执行程序. 安装包:python-2.7.14.amd64.msi(没有 ...

  9. 分享一个自己写的vue多语言插件smart-vue-i18n

    前言 目前有比较成熟的方案(vue-i18n)了解了下,并且实用了一下感觉对于我在使用的项目来说略显臃肿,功能比较多,所以压缩的会比较大,在移动端不太适合所以自己花一天时间撸了一个vue多语言插件,压 ...

  10. 读书笔记--C陷阱与缺陷(三)

    第三章 1. 指针与数组 书中强调C中数组注意的两点: 1)     C语言只有一维数组,但是数组元素可以是任何类型对象,是另外一个数组时就产生了二维数组.数组大小是常数(但GCC实现了变长数组..) ...