Convert a BST to a sorted circular doubly-linked list in-place. Think of the left and right pointers as synonymous to the previous and next pointers in a doubly-linked list.

Let's take the following BST as an example, it may help you understand the problem better:

We want to transform this BST into a circular doubly linked list. Each node in a doubly linked list has a predecessor and successor. For a circular doubly linked list, the predecessor of the first element is the last element, and the successor of the last element is the first element.

The figure below shows the circular doubly linked list for the BST above. The "head" symbol means the node it points to is the smallest element of the linked list.

Specifically, we want to do the transformation in place. After the transformation, the left pointer of the tree node should point to its predecessor, and the right pointer should point to its successor. We should return the pointer to the first element of the linked list.

The figure below shows the transformed BST. The solid line indicates the successor relationship, while the dashed line means the predecessor relationship.

[leetcode]426. Convert Binary Search Tree to Sorted Doubly Linked List二叉搜索树转有序双向链表的更多相关文章

  1. LeetCode 426. Convert Binary Search Tree to Sorted Doubly Linked List

    原题链接在这里:https://leetcode.com/problems/convert-binary-search-tree-to-sorted-doubly-linked-list/ 题目: C ...

  2. 【LeetCode】426. Convert Binary Search Tree to Sorted Doubly Linked List 解题报告 (C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 递归 迭代 日期 题目地址:https://leetc ...

  3. 426. Convert Binary Search Tree to Sorted Doubly Linked List把bst变成双向链表

    [抄题]: Convert a BST to a sorted circular doubly-linked list in-place. Think of the left and right po ...

  4. [LC] 426. Convert Binary Search Tree to Sorted Doubly Linked List

    Convert a BST to a sorted circular doubly-linked list in-place. Think of the left and right pointers ...

  5. [LeetCode] Convert Binary Search Tree to Sorted Doubly Linked List 将二叉搜索树转为有序双向链表

    Convert a BST to a sorted circular doubly-linked list in-place. Think of the left and right pointers ...

  6. LeetCode426.Convert Binary Search Tree to Sorted Doubly Linked List

    题目 Convert a BST to a sorted circular doubly-linked list in-place. Think of the left and right point ...

  7. [LeetCode] 272. Closest Binary Search Tree Value II 最近的二叉搜索树的值 II

    Given a non-empty binary search tree and a target value, find k values in the BST that are closest t ...

  8. [LeetCode#272] Closest Binary Search Tree Value II

    Problem: Given a non-empty binary search tree and a target value, find k values in the BST that are ...

  9. [LeetCode] Trim a Binary Search Tree 修剪一棵二叉搜索树

    Given a binary search tree and the lowest and highest boundaries as L and R, trim the tree so that a ...

随机推荐

  1. 第5章 进程环境(1)_进程结构(task_struct)

    1. 进程的概念和进程结构 1.1 进程 (1)程序(program):是一些保存在磁盘上有序指令的集合,是存放在磁盘文件中的可执行文件.但没有任何执行的概念,它是静态的. (2)进程(process ...

  2. Unity的JIT和AOT实现

    https://myhloli.com/about-il2cpp.html JIT方式: Unity的跨平台技术是通过一个Mono虚拟机实现的.而这个虚拟机更新太慢,不能很好地适应众多的平台. And ...

  3. 【洛谷】P1341 无序字母对(欧拉回路)

    题目 传送门:QWQ 分析 快把欧拉回路忘光了. 欧拉回路大概就是一笔画的问题,可不可以一笔画完全图. 全图有欧拉回路当且仅当全图的奇数度数的点有0或2个. 2个时是一个点是起点,另一个是终点. 本题 ...

  4. C++多线程同步之临界区(CriticalSection)

    原文链接:http://blog.csdn.net/olansefengye1/article/details/53262917 一.Win32平台 1.相关头文件和接口 #include <w ...

  5. bitmap运算

    概述 所谓bitmap就是用一个bit位来标记某个元素对应的value,而key即是这个元素.由于采用bit为单位来存储数据,因此在可以大大的节省存储空间     算法思想 32位机器上,一个整形,比 ...

  6. Swift里的CAP理论和NWR策略应用

    http://blog.sina.com.cn/s/blog_57f61b490101a8ca.html 最近有人讨论到swift副本数是否能够调整,3副本成本过高,如果改成2副本怎么样?多聊了几句以 ...

  7. 16. orcle中replace的用法及例子

    replace 函数用法如下: replace('将要更改的字符串','被替换掉的字符串','替换字符串'); 例子: select  replace ('1,2,3',',',';') from d ...

  8. leetcode54

    class Solution { public: vector<int> spiralOrder(vector<vector<int>>& matrix) ...

  9. Java工具类实现校验公民身份证的有效性

    转自:https://www.oschina.net/code/snippet_1859292_39120 1 package com.tg.user.controller; import java. ...

  10. 在spring中实现quartz的动态调度(开始、暂停、停止等)

    版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/fantasic_van/article/details/74942062 需求: 需要在页面设定某个 ...