BZOJ 1211[HNOI2004]树的计数 - prufer数列
描述
一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵。给定n,d1, d2, …, dn,编程需要输出满足d(vi)=di的树的个数。
题解
每颗树都对应以中prufer数列, prufer数列中数出现的个数 $=$ 节点的度数 -1
所以变成了求再prufer数列中, $x$出现次数为$c_x$ 的排列数
答案为$!(N - 2) / \prod\limits_{i = 1}^N{a_i-1}$
直接算会爆LL, 需要分解质因数
另外还需要特判
代码
我发现打了个错误程序,由于某B姓OJ数据太水竟然过了。。。这个是错误的→_→,幸好发现了, 不然要出锅QAQ
#include<cstdio>
#include<algorithm>
#define ll long long
#define rd read()
using namespace std; const int N = ; int pri[N], tot, vis[N], n, cnt[N], sum;
ll ans = ; ll fpow(ll a, ll p) {
ll re = ;
for(; p; p >>= , a = a * a) if(p & ) re = re * a;
return re;
} int read() {
int X = , p = ; char c = getchar();
for(; c > '' || c < ''; c = getchar()) if(c == '-') p = -;
for(; c >= '' && c <= ''; c = getchar()) X = X * + c - '';
return X * p;
} void init() {
for(int i = ; i < N; ++i) {
if(!vis[i]) pri[++tot] = i;
for(int j = ; j <= tot && pri[j] * i < N; ++j) {
vis[i * pri[j]] = ;
if(i % pri[j] == ) break;
}
}
} void cal(int x, int k) {
if(!x || x == ) return;
for(int i = ; i <= tot && x != ; ++i) if(x % pri[i] == ) {
while(x % pri[i] == ) cnt[i] += k, x /= pri[i];
}
} int main()
{
init();
n = rd;
for(int i = ; i <= n - ; ++i) cal(i, );
for(int i = ; i <= n; ++i) {
int x = rd;
if(n != && !x) return printf("0\n"), ;
if(n == && x) return printf("0\n"), ;
if(n == && !x) return printf("1\n"), ;
for(int j = ; j < x; ++j) cal(j, -);
sum += x - ;
}
if(sum != n - ) return printf("0\n"), ;
for(int i = ; i <= tot; ++i) ans *= fpow(pri[i], cnt[i]);
printf("%lld\n", ans);
}
BZOJ 1211[HNOI2004]树的计数 - prufer数列的更多相关文章
- BZOJ 1211 HNOI2004 树的计数 Prufer序列
题目大意:给定一棵树中全部点的度数,求有多少种可能的树 Prufer序列.详细參考[HNOI2008]明明的烦恼 直接乘会爆long long,所以先把每一个数分解质因数.把质因数的次数相加相减.然后 ...
- bzoj 1211: [HNOI2004]树的计数 -- purfer序列
1211: [HNOI2004]树的计数 Time Limit: 10 Sec Memory Limit: 162 MB Description 一个有n个结点的树,设它的结点分别为v1, v2, ...
- BZOJ 1211: [HNOI2004]树的计数( 组合数学 )
知道prufer序列就能写...就是求个可重集的排列...先判掉奇怪的情况, 然后答案是(N-2)!/π(d[i]-1)! -------------------------------------- ...
- [HNOI2004]树的计数 prufer数列
题面: 一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, …, dn,你的程序需要输出满足d( ...
- 【刷题】BZOJ 1211 [HNOI2004]树的计数
Description 一个有n个结点的树,设它的结点分别为v1, v2, -, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, -, dn,编程需要 ...
- bzoj 1211: [HNOI2004]树的计数
prufer的应用.. 详细见这篇博客:https://www.cnblogs.com/dirge/p/5503289.html import java.math.BigInteger; import ...
- 【BZOJ 1211】 1211: [HNOI2004]树的计数 (prufer序列、计数)
1211: [HNOI2004]树的计数 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2468 Solved: 868 Description 一 ...
- bzoj1211: [HNOI2004]树的计数 prufer编码
题目链接 bzoj1211: [HNOI2004]树的计数 题解 prufer序 可重排列计数 代码 #include<bits/stdc++.h> using namespace std ...
- Luogu P2290 [HNOI2004]树的计数 Prufer序列+组合数
最近碰了$prufer$ 序列和组合数..于是老师留了一道题:P2624 [HNOI2008]明明的烦恼 qwq要用高精... 于是我们有了弱化版:P2290 [HNOI2004]树的计数(考一样的可 ...
随机推荐
- 基于Linux的Samba开源共享解决方案测试(四)
对于客户端的网络监控如图: 双NAS网关100Mb码率视音频文件的稳定读测试结果如下: 100Mb/s负载性能记录 NAS网关资源占用 稳定写 稳定写 CPU空闲 内存空闲 网卡占用 NAS1 8个稳 ...
- 如何对hashmap按value值排序
http://bbs.csdn.net/topics/90321713 这个帖子中没有我想要的答案,treemap是根据key排序的,想以value排序,那么可以key,value互换一下,不过这样的 ...
- 汇编环境配置及 Hello World。DOSBox,debug.exe,VisualStudio
▶ DOSBOX 相关 ● 下载 DOSBox(http://www.dosbox.com/download.php?main=1),安装到文件夹 DOSBox . ● 下载 debug.exe(Wi ...
- rhel7配置ELK过程
参考网站:https://www.cnblogs.com/hongdada/p/7887455.html https://my.oschina.net/codingcloud/blog/1615013 ...
- task 03-27
To integrate the spring with jpa, Basically completed the jpa of study;To integrate the spring wi ...
- 使用JavaScript的XMLHttpRequest发送POST、GET请求以及接收返回值
使用XMLHttpRequest对象分为4部完成: 1.创建XMLHttpRequest组建 2.设置回调函数 3.初始化XMLHttpRequest组建 4.发送请求 实例代码: [javascri ...
- ubuntu16.04设置电池充电阈值
thinkpad在安装ubuntu16.04之后,设置充电阈值: 方法一: 使用双系统,在windows下使用联想的Lenovo setting center设置之后,在ubuntu之下也可以保持相同 ...
- tcprstat分析服务的响应速度
Tcprstat 是免费开源的TCP分析工具,可检测网络通信状态,并且计算请求和响应之间的延迟. 它的输出格式类似 linux 的 vmstat 和 iostat 的输出格式.这个工具能够检测到某个端 ...
- 迷你MVVM框架 avalonjs 学习教程14、事件绑定
之前的章节许多示例代码也或多或少地展示了如何使用ms-click来绑定事件了.能直接在模板上绑定是事件,这也是静态模板与动态绑定的一大区别.ms-click不是简单的onclick的别名,它在内部屏蔽 ...
- mysql中binlog_format的三种模式
mysql复制主要有三种方式:基于SQL语句的复制(statement-based replication, SBR),基于行的复制(row-based replication, RBR),混合模式复 ...