BZOJ 1211[HNOI2004]树的计数 - prufer数列
描述
一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵。给定n,d1, d2, …, dn,编程需要输出满足d(vi)=di的树的个数。
题解
每颗树都对应以中prufer数列, prufer数列中数出现的个数 $=$ 节点的度数 -1
所以变成了求再prufer数列中, $x$出现次数为$c_x$ 的排列数
答案为$!(N - 2) / \prod\limits_{i = 1}^N{a_i-1}$
直接算会爆LL, 需要分解质因数
另外还需要特判
代码
我发现打了个错误程序,由于某B姓OJ数据太水竟然过了。。。这个是错误的→_→,幸好发现了, 不然要出锅QAQ
#include<cstdio>
#include<algorithm>
#define ll long long
#define rd read()
using namespace std; const int N = ; int pri[N], tot, vis[N], n, cnt[N], sum;
ll ans = ; ll fpow(ll a, ll p) {
ll re = ;
for(; p; p >>= , a = a * a) if(p & ) re = re * a;
return re;
} int read() {
int X = , p = ; char c = getchar();
for(; c > '' || c < ''; c = getchar()) if(c == '-') p = -;
for(; c >= '' && c <= ''; c = getchar()) X = X * + c - '';
return X * p;
} void init() {
for(int i = ; i < N; ++i) {
if(!vis[i]) pri[++tot] = i;
for(int j = ; j <= tot && pri[j] * i < N; ++j) {
vis[i * pri[j]] = ;
if(i % pri[j] == ) break;
}
}
} void cal(int x, int k) {
if(!x || x == ) return;
for(int i = ; i <= tot && x != ; ++i) if(x % pri[i] == ) {
while(x % pri[i] == ) cnt[i] += k, x /= pri[i];
}
} int main()
{
init();
n = rd;
for(int i = ; i <= n - ; ++i) cal(i, );
for(int i = ; i <= n; ++i) {
int x = rd;
if(n != && !x) return printf("0\n"), ;
if(n == && x) return printf("0\n"), ;
if(n == && !x) return printf("1\n"), ;
for(int j = ; j < x; ++j) cal(j, -);
sum += x - ;
}
if(sum != n - ) return printf("0\n"), ;
for(int i = ; i <= tot; ++i) ans *= fpow(pri[i], cnt[i]);
printf("%lld\n", ans);
}
BZOJ 1211[HNOI2004]树的计数 - prufer数列的更多相关文章
- BZOJ 1211 HNOI2004 树的计数 Prufer序列
题目大意:给定一棵树中全部点的度数,求有多少种可能的树 Prufer序列.详细參考[HNOI2008]明明的烦恼 直接乘会爆long long,所以先把每一个数分解质因数.把质因数的次数相加相减.然后 ...
- bzoj 1211: [HNOI2004]树的计数 -- purfer序列
1211: [HNOI2004]树的计数 Time Limit: 10 Sec Memory Limit: 162 MB Description 一个有n个结点的树,设它的结点分别为v1, v2, ...
- BZOJ 1211: [HNOI2004]树的计数( 组合数学 )
知道prufer序列就能写...就是求个可重集的排列...先判掉奇怪的情况, 然后答案是(N-2)!/π(d[i]-1)! -------------------------------------- ...
- [HNOI2004]树的计数 prufer数列
题面: 一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, …, dn,你的程序需要输出满足d( ...
- 【刷题】BZOJ 1211 [HNOI2004]树的计数
Description 一个有n个结点的树,设它的结点分别为v1, v2, -, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, -, dn,编程需要 ...
- bzoj 1211: [HNOI2004]树的计数
prufer的应用.. 详细见这篇博客:https://www.cnblogs.com/dirge/p/5503289.html import java.math.BigInteger; import ...
- 【BZOJ 1211】 1211: [HNOI2004]树的计数 (prufer序列、计数)
1211: [HNOI2004]树的计数 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2468 Solved: 868 Description 一 ...
- bzoj1211: [HNOI2004]树的计数 prufer编码
题目链接 bzoj1211: [HNOI2004]树的计数 题解 prufer序 可重排列计数 代码 #include<bits/stdc++.h> using namespace std ...
- Luogu P2290 [HNOI2004]树的计数 Prufer序列+组合数
最近碰了$prufer$ 序列和组合数..于是老师留了一道题:P2624 [HNOI2008]明明的烦恼 qwq要用高精... 于是我们有了弱化版:P2290 [HNOI2004]树的计数(考一样的可 ...
随机推荐
- Spectrum Scale
高端存储:2016年为止,最新产品为DS8884.DS8886和DS8888. 闪存系统:2016年为止,最新产品,以FlashSystem 900为硬件基础,包装了FlashSystem V9000 ...
- navicate for mysql mac 含注册机 亲测可用
百度网盘:https://pan.baidu.com/s/1hrXnRes
- jquery knob旋钮插件
<!DOCTYPE html> <html> <head> <title>jQuery Knob 尝试</title> <script ...
- EF中GroupBy扩展方法的简单使用
public ActionResult ShopInfo() { ViewBag.ShopList = ShopService.GetEntities(x => x.IsDelete == fa ...
- uva579-简单计算题
题意: 求分钟和时钟之间的夹角 解法:俩个夹角互减 AC:10ms #include<iostream> #include<functional> #include<qu ...
- UVA439-水题
题意:一只棋盘上的马,从一个点到另外一个点要走多少步 解法:广搜 #include<stdio.h> #include<iostream> #include <strst ...
- jar包双击执行引用外部包问题
大家都知道一个java应用项目可以打包成一个jar,当然你必须指定一个拥有main函数的main class作为你这个jar包的程序入口. 具体的方法是修改jar包内目录META-INF下的MANIF ...
- 得到当前对象在不同大小的页面中的绝对位置,及冒泡cancelBubble
<!doctype html> <html> <head> <meta charset="utf-8"> <title> ...
- mysql常见问题解决方法.
1. 问题:mysql启动报错(linux) [root@localhost ~]# service mysqld restart Another MySQL daemon already runni ...
- PHP依赖注入(DI)和控制反转(IoC)详解
这篇文章主要介绍了PHP依赖注入(DI)和控制反转(IoC)的相关资料,具有一定的参考价值,感兴趣的小伙伴们可以参考一下 首先依赖注入和控制反转说的是同一个东西,是一种设计模式,这种设计模式用来减少程 ...