题目链接

http://poj.org/problem?id=1847

题意

有n个车站,编号1~n,每个车站有k个出口,车站的出口默认是k个出口中的第一个,如果不想从默认出口出站,则需要手动选择出站口。现在从车站a出发,求最少需要手动选择几次出站口才能到车站b。

思路

这题的图中没有显式给出结点之间的距离,但可以根据题意给路径添加距离,比如测试数据中的“2 2 3”表示从第1个车站默认开往第2个车站,想要开到第3个车站则需手动选择,所以我们可以令结点1到结点2的边权值为0(默认车站),结点1到结点3边权值为1(需手动选择的车站),这样就可以使用Dijkstra算法、Floyd算法或者SPFA算法求解a,b之间的最短路,a,b之间最短路的值即是需手动选择车站的次数。

代码

Dijkstra算法和Floyd算法:

 #include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std; const int INF = 0x3f3f3f;
const int N = + ;
int map[N][N];
int dist[N];
int visit[N];
int n, a, b; void dijkstra() //Dijkstra算法
{
memset(visit, , sizeof(visit));
for (int i = ; i <= n; i++)
dist[i] = map[a][i];
dist[a] = ;
visit[a] = ;
int min_dist, now = a;
for (int i = ; i <= n; i++)
{
min_dist = INF;
for (int j = ; j <= n; j++)
{
if (!visit[j] && dist[j] < min_dist)
{
min_dist = dist[j];
now = j;
}
}
visit[now] = ;
for (int j = ; j <= n; j++)
dist[j] = min(dist[j], dist[now] + map[now][j]);
}
if (dist[b] >= INF) //注意是dist[b]>=INF,不是dist[b]==INF
puts("-1");
else printf("%d\n", dist[b]);
} void floyd() //Floyd算法
{
for (int k = ; k <= n; k++)
for (int i = ; i <= n; i++)
for (int j = ; j <= n; j++)
map[i][j] = min(map[i][j], map[i][k] + map[k][j]);
if (map[a][b] >= INF)
puts("-1");
else printf("%d\n", map[a][b]);
} int main()
{
//freopen("poj1847.txt", "r", stdin);
while (scanf("%d%d%d", &n, &a, &b) == )
{
memset(map, INF, sizeof(map));
int k, t;
for (int i = ; i <= n; i++)
{
scanf("%d", &k);
for (int j = ; j <= k; j++)
{
scanf("%d", &t);
if (j == )
map[i][t] = ;
else map[i][t] = ;
}
}
dijkstra();
//floyd();
}
return ;
}

SPFA算法:

 #include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <vector>
#include <queue>
using namespace std; struct Edge
{
int s, e, dist; Edge() {}
Edge(int s, int e, int d) :s(s), e(e), dist(d) {}
}; const int INF = 0x3f3f3f;
const int N = + ;
vector<Edge> v[N];
int dist[N];
int visit[N];
int n, a, b; void spfa(int s)
{
queue<int> q;
memset(dist, INF, sizeof(dist));
memset(visit, , sizeof(visit));
q.push(s);
visit[s] = ;
dist[s] = ; while (!q.empty())
{
int s = q.front();
q.pop();
visit[s] = ;
for (int i = ; i < v[s].size(); i++)
{
int e = v[s][i].e;
if (dist[e] > dist[s] + v[s][i].dist)
{
dist[e] = dist[s] + v[s][i].dist;
if (!visit[e])
{
visit[e] = ;
q.push(e);
}
}
}
}
if (dist[b] >= INF)
puts("-1");
else printf("%d\n", dist[b]);
} int main()
{
//freopen("poj1847.txt", "r", stdin);
while (scanf("%d%d%d", &n, &a, &b) == )
{
for (int i = ; i <= n; i++)
v[i].clear(); int k, t;
for (int i = ; i <= n; i++)
{
scanf("%d", &k);
for (int j = ; j <= k; j++)
{
scanf("%d", &t);
if (j == )
v[i].push_back(Edge(i, t, ));
else v[i].push_back(Edge(i, t, ));
}
}
spfa(a); //求结点a到其余各点的最短路径
}
return ;
}

poj1847 Tram(Dijkstra || Floyd || SPFA)的更多相关文章

  1. hdoj2544 最短路(Dijkstra || Floyd || SPFA)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=2544 思路 最短路算法模板题,求解使用的Dijkstra算法.Floyd算法.SPFA算法可以当做求解 ...

  2. HDU——1874畅通工程续(Dijkstra与SPFA)

    畅通工程续 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submiss ...

  3. 稀疏图(邻接链表),并查集,最短路径(Dijkstra,spfa),最小生成树(kruskal,prim)

    全部函数通过杭电 1142,1162,1198,1213等题目测试. #include<iostream> #include<vector> #include<queue ...

  4. 稠密图(邻接矩阵),并查集,最短路径(Dijkstra,spfa),最小生成树(kruskal,prim)

    全部函数通过杭电 1142,1162,1198,1213等题目测试. #include<iostream> #include<vector> #include<queue ...

  5. 【算法】狄克斯特拉算法(Dijkstra’s algorithm)

    狄克斯特拉算法(Dijkstra’s algorithm) 找出最快的路径使用算法——狄克斯特拉算法(Dijkstra’s algorithm). 使用狄克斯特拉算法 步骤 (1) 找出最便宜的节点, ...

  6. O - Layout(差分约束 + spfa)

    O - Layout(差分约束 + spfa) Like everyone else, cows like to stand close to their friends when queuing f ...

  7. 几大最短路径算法比较(Floyd & Dijkstra & Bellman-Ford & SPFA)

    几个最短路径算法的比较:Floyd 求多源.无负权边(此处错误?应该可以有负权边)的最短路.用矩阵记录图.时效性较差,时间复杂度O(V^3).       Floyd-Warshall算法(Floyd ...

  8. 四大算法解决最短路径问题(Dijkstra+Bellman-ford+SPFA+Floyd)

    什么是最短路径问题? 简单来讲,就是用于计算一个节点到其他所有节点的最短路径. 单源最短路算法:已知起点,求到达其他点的最短路径. 常用算法:Dijkstra算法.Bellman-ford算法.SPF ...

  9. 最短路径:(Dijkstra & Floyd)

    Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Di ...

随机推荐

  1. git push时报错fatal: Could not read from remote repository.

    后来发现,出现这个问题是因为仓库地址不对 使用如下命令先查看一下: $ git remote -v 发现跟github的地址不一致 然后在终端输入:git remote set-url origin ...

  2. Java入门系列(五)JVM内存模型

    概述 根据<Java 虚拟机规范>中的说法,Java 虚拟机的内存结构可以分为公有和私有两部分. 公有指的是所有线程都共享的部分,指的是 Java 堆.方法区.常量池. 私有指的是每个线程 ...

  3. jQuery插件开发中$.extend和$.fn.extend辨析

    jQuery插件开发分为两种:   1 类级别 类级别你可以理解为拓展jquery类,最明显的例子是$.ajax(...),相当于静态方法. 开发扩展其方法时使用$.extend方法,即jQuery. ...

  4. Bzoj3352 [ioi2009]旅行商

    Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 89  Solved: 36 Description 旅行商认定如何优化旅行路线是一个非常棘手的计算问题 ...

  5. 27、增强for循环

    增强for循环 使用增强for循环可以简化数组和Collection集合的遍历,格式: for(元素数据类型 变量 : 数组或者Collection集合) { 使用变量即可,该变量就是元素 } 例: ...

  6. Java编程思想 4th 第1章 对象导论

    所有编程语言都提供抽象机制. 面向对象编程似乎是一种很好的编程思想和方式,面向对象编程中的对象简洁描述是:对象具有状态.行为和标识.状态指的是数据存储,存储的数据能反应状态:行为指的是方法,方法表示对 ...

  7. 【多视图几何】TUM 课程 第2章 刚体运动

    课程的 YouTube 地址为:https://www.youtube.com/playlist?list=PLTBdjV_4f-EJn6udZ34tht9EVIW7lbeo4 .视频评论区可以找到课 ...

  8. 无需登录-悟空CRM 存储型XSS

    无需登录-悟空CRM 存储型XSS 审计悟空的缘由是看见某云爆出CRM的getshell,于是就想着去挖出来瞅瞅!但可能自己把自己给局限了,就想着去挖那些无限制访问的文件. 故事的发生点 漏洞文件:/ ...

  9. Android Build.VERSION.SDK_INT兼容介绍

    尽管Android向下兼容不好,但是一个程序还是可以在多个平台上跑的.向下兼容不好,接口改变,新的平台上不能用旧的API,旧的平台更不可能用新的API,不等于一个平台需要一个APK.可以在高SDK上开 ...

  10. local variables referenced from a Lambda expression must be final or effectively final------理解

    前几天使用lamdba时,报了一个这个错,原因是在lamdba体中使用了一个变量,觉得很奇怪! 今天在读这本书的时候,又看到了这个解释,这里有了更深刻的理解,总结一下: 在jdk1.8之前在使用匿名内 ...